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Abstract. In this work we propose a Deniable Ring Authentication
scheme secure against a powerful Big Brother type of adversary and
yielding an optimal number of communication rounds. Our scheme
is based on an infra-structure assumption: the existence of verifiable
Broadcast Encryption. Particularly, our solution can be instantiated by
using the Broadcast Encryption protocol of Boneh, Gentry and Waters
(CRYPTO 2005), resulting in a Deniable Ring Authentication protocol
with constant message size.
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1 Introduction

Digital Signatures [5] play a very important role in modern cryptography and
are used in applications ranging from e-commerce to contract signing and secure
email communication. In signature schemes one usually desires non-repudiation
of messages: the receiver of a signed message can convince anyone that the
sender actually signed that message. However, non-repudiation can be highly
undesirable in many applications, for example, consider the situation when the
receiver is paying for the authentication as in the case of software distribution.
Deniable Authentication [9] has been proposed to cope with the cases where
non-repudiation is a problem. It is an authentication protocol that convinces
a receiver of the authenticity of a given message but does not allow he/she to
prove this authenticity to other parties.

In [18], Naor combined Deniable Authentication and Ring Signatures [22]
to obtain Deniable Ring Authentication in which it is possible to convince any
receiver (a.k.a. verifier) that a sender (a.k.a. prover) that is member of some
ad hoc subset of the parties (a ring) is authenticating a message M without
revealing the identity of the prover and in such way that the verifier cannot
convince other parties of this authentication. In the same paper, Naor provided
a Deniable Ring Authentication protocol that assumes the existence of a Public
Key Infrastructure, has four rounds of communication (since deniable authen-
tication is stronger than ZKIP, it requires at least four rounds [12]) and has
message size proportional to the number of ring’s members. Naor also consid-
ered a different scenario where the protocol security must be proven against a
powerful adversary which knows all the secret keys (called a Big Brother). This



properly models attacks against Deniable Ring Authentication protocols based
on Identity Based Encryption infrastructure [23, 2] and on Broadcast Encryp-
tion [10, 3], where a center provides keys to the users. In this stricter scenario,
Naor obtained a secure protocol based on the existence of Identity Based En-
cryption infrastructure and Broadcast Encryption. The resulting protocol had
six rounds of communication in total.

1.1 Motivation

We obtain a practical deniable ring authentication schemes secure against a
Big Brother adversary yielding

– Optimal communication rounds (4 rounds).
– Constant message size.

Our solution assumes the existence of a Broadcast Encryption Infrastructure
with one additional requirement: verifiability. This property can be found in the
protocol of [3], for example. By assuming this infra-structure assumption, we
present a Deniable Ring Authentication protocol that is secure in the presence
of Big Brother and has four rounds of communication (round-optimal). When
instantiated with the particular protocol proposed in [3], the resulting scheme
has constant message size (i.e., it does not dependent on the number of ring’s
members). Thus assuming a Broadcast Encryption Infrastructure instead of a
Public Key Infrastructure, we obtain a protocol that has the same four rounds
as Naor’s protocol for Public Key Infrastructure, but has constant message size
instead of message size linear in the number of ring’s members. In comparison
to Naor’s protocol that is secure in the presence of Big Brother, our protocol
saves two rounds of communication.

1.2 Background

Deniable Authentication Deniable authentication is a stronger notion of zero
knowledge interactive proof system in which the transcript of the interaction
cannot be an evidence for enforcing non-repudiation of the sender. Note that
in the security proof of ZKIPs we construct a simulator which can create the
same transcript without using the witness, but this does not immediately imply
deniability.

In Naor’s paper “Deniable Ring Authentication” [18], he extends this notion
to the context of Rivest, Shamir, Tauman’s ring signature framework [22]. Ring
signature is a very similar notion to Group signature except for:

– There exists no authority who can violate the user’s anonymity.
– It should be setup free, i.e. we can use only existing infrastructures (e.g.

PKI) which are used for common purposes, e.g. normal encryption or au-
thentication.

Ring authentication is an interactive version of ring signatures.
Broadcast Encryption Broadcast Encryption (BE) is an encryption scheme

in which the messages have multiple recipients. The first non-trivial solution
was present in [10] by Fiat and Naor. Naor et al. [19] obtained a more efficient
scheme to broadcast encrypted messages for large subsets of the system parties
(i.e., only a small fraction of the users can be revoked). Other schemes of BE
for large sets were proposed in [20, 14, 6, 7, 13]. Boneh, Gentry and Waters [3]
constructed the first fully collusion resistant BE protocol that has constant size
for ciphertext and decryption keys.



1.3 Outline of the Paper

In section 2 we define Deniable Ring Authentication, Broadcast Encryption
and the computational assumptions used in this paper. In section 3 we present
Naor’s Deniable Ring Authentication protocol. We present our new protocol in
section 4. Section 5 describes an efficient implementation of our protocol using
Boneh-Gentry-Waters’ Broadcast Encryption protocol. The conclusions are in
section 6.

2 Preliminaries

In this section we introduce the definitions of Deniable Ring Authentication and
Broadcast Encryption. We also present the computational assumptions used in
the scheme of section 5. We closely follow the lines of [18] in the description of
Deniable Ring Authentication and the lines of [3] in the description of Broadcast
Encryption and computational assumptions.

2.1 Deniable Ring Authentication

In the Deniable Ring Authentication model, we assume that the set of possible
provers (each having an unique id i ∈ {1, 2, . . . , n}) has access to some infras-
tructure, either Public Key Infrastructure or Broadcast Encryption. A ring S
is any subset of {1, 2, . . . , n}.

An honest authenticator P ∈ S executes an interactive protocol with a
verifier V to authenticate a message M . We do not require that the verifier be
part of the PKI/BE in question, we only require that the verifier and the prover
know the public keys of all members of S. We assume that messages are routed
anonymously and that the message M to be authenticated is known previously
by the prover and the verifier. The adversary A controls some parties of the
system and knows the secret keys of all players (i.e., we assume the Big Brother
model). The Deniable Ring Authentication should be complete and secure as
defined below.

Let Output(S,P,V,M) denote the result of executing the Deniable Ring
Authentication protocol between the verifier V and the prover P that tries
to prove that some member of the ring S is authenticating the message M .
Similarly, let View(S,P,V,M) denote the transcript of such execution.

Definition 1 (Completeness). A Deniable Ring Authentication protocol is
complete if for any valid ring S, any honest prover P ∈ S, any honest veri-
fier V, and any message M , we have that Output(S,P,V,M) = accept with
overwhelming probability.

A Deniable Ring Authentication protocol is secure if it satisfy three require-
ments described below: Soundness (Existential Unforgeability), Source Hiding
and Zero-Knowledge (Deniability).

To an adversaryA trying to forge a message we associate the following game.
A initially knows the identities and the public keys of all possible provers. It
also chooses a target ring S (which we call honest provers), and is given all
private keys of {1, ..., n}\S.

Query Phase: A adaptively chooses messages M1,M2, . . ., rings S1,S2, . . .
and honest provers P1,P2, . . . such that Pi ∈ Si. The honest prover Pi
executes the protocol authenticating the message Mi as been sent by some
member of Si (A controls the verifiers in these protocol executions).



Output Phase: A playing the role of the prover P chooses a message M , and
executes the authentication protocol with an honest verifier V. A wins if
Output(S,P,V,M) = accept, (S,M) /∈ {Si,Mi}i=1,2,....

Definition 2 (Soundness - Existential Unforgeability). A Deniable Ring
Authentication protocol meets the Soundness requirement if for any probabilis-
tic polynomial time adversary A, we have that its winning probability in the
previous game is negligible.

To an adversary A trying to discover the identity of the prover we associate
the following game. A initially knows the identities and the keys (both public
and private) of all possible provers.

Challenge Phase: A (that is given all secrets in the system and plays the
role of the verifier V) chooses a ring S, two honest provers P0,P1 ∈ S and
a message M and sends this information to the challenger. The challenger
randomly chooses b ∈ {0, 1} and executes the authentication protocol with
Pb as the prover.

Output Phase: A outputs its guess b′ ∈ {0, 1}. A wins the game if b′ = b.

Definition 3 (Source Hiding:). A Deniable Ring Authentication protocol is
Source Hiding, if for all probabilistic polynomial time adversary A, the proba-
bility that A wins the game above is negligibly close to 1
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Definition 4 (Zero-Knowledge - Deniability). Consider an adversary A
that initially knows the identities and the keys (both public and private) of
all possible provers. A protocol meets the Zero-Knowledge requirement if for
any transcript View(S,P,V,M) generated by a protocol execution in which a
member P of S acted as the prover and authenticated the message M to V, there
exists a polynomial-time simulator Z that knowing only S,V,M and the public
keys generates an indistinguishable transcript (to every one but the sender).

2.2 Broadcast Encryption

We present the definitions of our main tool for obtaining our result: Broadcast
Encryption. We define Broadcast Encryption as a key encapsulation mechanism
(the key generated by this protocol can be used in a One-time Symmetric Key
Encryption protocol to encrypt the message M [4]). It is constituted of three
algorithms:

Setup: Takes as input the number of parties n and outputs the public key PK
and the private keys d1, . . . , dk (one for each party).

Encrypt: Takes as input the public key PK, a set S ⊆ {1, . . . , n} of receivers
of the broadcast and local randomness coin. It outputs a header H and a
key of a symmetric encryption scheme K.
The key K is then used in a symmetric key encryption scheme to encrypt
the message M obtaining a ciphertext L. The message broadcasted to the
users is C = (S, H, L). We will denote the result of executing this algorithm
by C = EncPK,S,coin(M).

Decrypt: Takes as input a public key PK, an user id i ∈ {1, . . . , n}, the
private key di and a ciphertext C (constituted of a header H, a set S ⊆
{1, . . . , n} and a ciphertext L of a symmetric encryption scheme). If i ∈ S,
it outputs a key of a symmetric encryption scheme K.
The key K is then used to decrypt L in the symmetric key encryption
scheme obtaining the message M .



For all S ⊆ {1, . . . , n} and all i ∈ S, if the public and private keys were
correctly generated by the Setup algorithm and the ciphertext was generated
following the procedures of the Encrypt algorithm, then the output obtained
by i executing correctly the Decrypt algorithm must be M with overwhelming
probability.

We define security against a static adversary that selects the parties that it
will attack before the execution of the Setup procedure. Security of a broadcast
encryption scheme is defined as a game between a challenger and an adversary
A who chooses some subset of the parties to attack and controls all the other
parties. The game proceeds in the sequence below.

Initialization: A outputs a set S∗ ⊆ {1, . . . , n} of the parties that it will
attack.

Setup: The challenger runs the setup algorithm of the scheme and obtains the
public key and the privates keys. It sends to A the keys of the parties that
A controls (i.e., all the parties that are not members of S∗).

Query Phase 1: A adaptively sends decryption queries to the challenger.
Each decryption query consists of triple (i,S, H) such that S ⊆ S∗ and
i ∈ S. The challenger executes the decryption procedure using the private
key of party i and sends the output (i.e., the symmetric key) to A.

Challenge: For the set S∗, the challenger using the Encrypt algorithm gen-
erates a header H∗ and a key K∗ of the symmetric encryption scheme. It
chooses randomly b ∈ {0, 1}, sets Kb = K and chooses randomly a key
K1−b. It sends (H∗,K0,K1) to A.

Query Phase 2: A adaptively sends decryption queries to the challenger.
Each decryption query consists of triple (i,S, H) such that S ⊆ S∗, i ∈ S
and H 6= H∗. The challenger executes the decryption procedure using the
private key of party i and sends the output (i.e., the symmetric key) to A.

Output: A outputs its guess b′ ∈ {0, 1}. A wins the game if b′ = b.

If the adversary is adaptive, we have to modify the above game as follows:
(1) there is no Initialization phase, (2) the adversary can corrupt the parties
adaptively, (3) A only fix the set of honest parties that it will attack, S∗, in
the Challenge phase.

We now define what it means for a broadcast encryption to be CCA2 se-
cure [21].

Definition 5 (CCA2 Security). The Broadcast Encryption protocol is CCA2
secure, if for all probabilistic polynomial time adversary A, the probability that
A wins the game is negligibly close to 1

2 .

2.3 Verifiability in Broadcast Encryption Schemes

Now we explain the definition of verifiability for broadcast encryption schemes
that we consider in this paper. Verifiability is a property that allows the valid
receivers to check that each recipient of the broadcasted encrypted message
received the same message (i.e., it must be possible to verify the equality of
the messages that each recipient decrypts). The definition is identical to that
proposed by Hanaoka and Kurosawa in a recent paper [15]. There are two types
of verifiability: public and private.

We say that a BE scheme is publicly verifiable if each valid receiver of
the broadcasted message can verify without using its decryption key that the
message received by each receiver is the same one.



For public verifiability, we define the advantage of an adversary A as

AdvVfyA = Pr[∃i, j ∈ S,Decrypt(PK, i, di, C) 6= Decrypt(PK, j, dj , C)|
((d1, . . . , dn), PK)← Setup(n);C ← A((d1, . . . , dn), PK)]

Definition 6. A Broadcast Encryption scheme is publicly verifiable if for all
probabilistic polynomial time adversary A, AdvVfyA is negligible.

2.4 The Bilinear Diffie-Hellman Exponent Assumption

We use the same the notation as [16, 17, 2, 3] for bilinear maps and bilinear map
groups. Let G and G1 be two (multiplicative) cyclic groups of prime order p.
Let g be a generator of G. A bilinear map is a map e : G × G → G1 with the
following properties

– (Bilinear) for all u, v ∈ G and a, b ∈ Z, we have that e(ua, vb) = e(u, v)ab.
– (Non-degenerate) e(g, g) 6= 1.

A group G is bilinear if the group operation in G can be computed efficiently
and there exists a group G1 and an efficiently computable bilinear map as
described above.

We will use the computational assumption known as Bilinear Diffie-Hellman
Exponent (BDHE) assumption [1, 3]. Let G be a bilinear group of prime order
p (p is a security parameter), let g and h be random generators in G and let α
be random in Z∗p. The decision l-BDHE states that given the vector

yg,α,l = (g(α), g(α
2), . . . , g(α

l), g(α
l+2), . . . , g(α

2l)) ∈ G2l−1,

no probabilistic polynomial time algorithm has non-negligible advantage, in the

security parameter p, in distinguishing the inputs (g, h, yg,α,l, e(g
(αl+1), h)) and

(g, h, yg,α,l, T ), where T is a random element of G1. The advantage is computed
over the random choice of g, h, α, T and the random bits used by the algorithm.

We will use henceforth the notation gi to denote g(α
i).

3 Previous Work: Naor’s Scheme

In this section, as an important previous work, we review Naor’s Deniable Ring
Authentication protocol.

3.1 Naor’s Idea

Naor started his scheme [18] from Dwork, Naor, and Sahai’s authentication
scheme [9] (which is an extension of Dolev, Dwork, Naor’s scheme [8]). Dwork-
Naor-Sahai scheme (with a single sender) is as follows:

Let (dk, PK) be a PKE key-pair of the prover. We assume that this PKE
scheme is CCA2 [21]. Let M be the message to be authenticated. We as-
sume that M is already known to both prover and verifier. We denote by
EncPK,coin(M) the result of executing the PKE’s encryption algorithm with
message M , public key PK and local randomness coin. The authentication
protocol for proving possession of dk is carried out as

Protocol 1 (Deniable Authentication)



1. V sends C = EncPK,coin(M ||R) to P where R is a random number.
2. P decrypts C (using its private key dk) to obtain R and sends C ′ =

EncPK,coin′(R) to V.
3. V sends R and coin to P. P re-encrypts M ||R using the same coin and

verifies whether EncPK,coin(M ||R) = C holds or not.
4. P sends R and coin′ to V. V re-encrypts R using the same coin′ and verifies

whether EncPK,coin′(R) = C ′ holds or not.

The above protocol is provably deniable and existentially unforgeable (for
single-user setting).

In Sec. 5 of Naor’s paper, he presents a ring authentication version of the
above protocol. The essential idea of Naor’s protocol is the following. For each
member of S, we run a independent parallel copy of the above protocol using
the same R. However, there is a delicate point which has to be carefully handled
in order to guarantee source hiding, and therefore, Naor also fixes this issue by
splitting R into R = R1 + . . .+Rn and encrypt them separately in Step 2. For
a set S such that the members public keys are PK1, . . . , PKn, the protocol is
executed as follows

Protocol 2 (Naor’s Deniable Ring Authentication Scheme)

1. V generates a randomR and sends (C1, . . . , Cn) = (EncPK1,coin1
(M ||R), . . . ,

EncPKn,coinn(M ||R)) to P.
2. P extracts R from Ci (using its secret key dki), chooses random R1, . . . , Rn

such thatR = R1+. . .+Rn and sends (C ′1, . . . , C
′
n) = (EncPK1,coin′

1
(R1), . . . ,

EncPKn,coin′
n
(Rn)) to V.

3. V sends R and (coin1, . . . , coinn) to P. P verifies if the ciphertexts from
Step 1 were properly formed.

4. P sends (R1, . . . , Rn) and (coin′1, . . . , coin
′
n) to V. V verifies if the cipher-

texts from Step 2 were properly formed and if R = R1 + . . .+Rn.

The main issue of this scheme is that the communication complexity of the
above scheme is linear in n, and this is considered not very efficient.

3.2 Modified Naor’s Scheme from Broadcast Encryption

In Sec. 7 of the same paper, Naor addresses an interesting and efficient variant
of the above-mentioned scheme by using Broadcast Encryption (BE). In this
variant, we assume that there exists a dedicated infrastructure of BE (for con-
tents distribution or something like that). If you want to prove that you are a
member of a specific subset of the set of all users, you can use the BE system by
replacing it with the PKE scheme in the above protocol. Then, we can have a
deniable ring authentication with “setup-free” property since we already have
a BE infrastructure (which would be commonly established in our real life).

However, in a strict sense, the above simple modification is not sufficient.
Namely, in a BE system, there exists the center who knows all users’ secrets,
and he can violate any user’s anonymity.

Here, we omit the concrete method for revealing anonymity. But, anyway, if
one knows all users’ secrets, he (i.e. center) can easily reveal it by using invalid
ciphertexts at Step 1 of the protocol. More specifically (for the two parties
case), if it (invalidly) consists of

(C1, C2) = (EncPK1,coin1
(M ||R),EncPK2,coin2

(M ||R′))



in Step 1 and if the returned message from P at Step 2 consists of

(C1′, C2′) = (EncPK1,coin′
1
(R1),EncPK2,coin′

2
(R2)),

such that R1 +R2 = R′, then V can immediately know that P has dk2.
Therefore, Naor further modifies the scheme for protecting against the above

attack. The final scheme is presented in Sec. 7 on Naor’s paper and has two
extra rounds of communication in comparison to the protocol using PKE.

From the above results, we see that if we use the standard PKE infras-
tructure, transmission data size of the resulting ring authentication protocol
becomes linear in the size of the ring (but its round complexity is optimal, i.e.
four rounds), and if we use BE infrastructure, the round complexity becomes
not optimal, i.e. six rounds (but transmission data can be shorter than that
from the standard PKE infrastructure). Hence, a deniable ring authentication
scheme (with setup-free property) which yields both constant transmission data
size and optimal round complexity has not been known.

4 Our Scheme

In this section we introduce our deniable ring authentication protocol that is
based on a broadcast encryption scheme.

4.1 Discussion: Essential Problem of the Naive Scheme

Here, we discuss the essential problem in the above faulty scheme (see sec-
tion 3.2). The main point is that the verifier V can reveal P’s anonymity by
encrypting two different random numbers R and R’ in the first step of the pro-
tocol and using the fact that it knows the private keys of all parties in order to
discover which party encrypted the message sent to the verifier in the second
step. So the verifier can violate the anonymity taking advantage of its ability
of sending different messages to the members of the ring.

Naor solved this problem using a non-malleable commitment with respect
to the encryptions of the first step, this way he protects the protocol against
everyone (see [18] for details). But this approach adds two rounds of commu-
nication to the protocol.

We follow a different approach and use a broadcast encryption protocol
that is verifiable to construct our deniable ring authentication protocol. In a
verifiable broadcast encryption protocol it is possible to the prover to check if
the verifier sent the same message to all recipients of the first step message,
and so the attack above does not work any more.

4.2 Our Scheme

Our idea is very simple. We just use a verifiable BE system in the above protocol
instead of an ordinary one in order to assure that the verifier sends the same
message to all members of the ring in the first step of the protocol. Despite
the simplicity of this idea, it solves the problem of the above faulty scheme
since it forces the verifier to send the same message to all members of the
ring. Interestingly, the Boneh-Gentry-Waters (BGW) BE system [3], which is
considered as the “basic” BE scheme, originally has verifiability, and therefore,
it is not very unnatural to assume a verifiable BE infrastructure.



Our protocol is similar to protocol 1, but it uses BE to the members of
the ring instead of using public key encryption with prover’s keys. Letting
EncPK,S,coin(M) denote encryption of plaintext M for users S under public
key PK of the underlying BE with local randomness coin, for any ring S such
that the prover P ∈ S (where S is a subset of all users), P can prove that he
is member of S as follows:

Protocol 3 (Our Deniable Ring Authentication Protocol)

1. V sends C = EncPK,S,coin(M ||R) to P where R is a random number.

2. P verifies if all the receivers of the broadcasted encrypted messages re-
ceived the same message (using the verifiability of the broadcast encryption
scheme) and stops the protocol if C is invalid. P decrypts C to obtain R
and sends C ′ = EncPK,S,coin′(R) to V.

3. V sends R and coin to P. P re-encrypts M ||R using the same coin and
checks whether EncPK,S,coin(M ||R) = C holds or not.

4. P sends R and coin′ to V. V re-encrypts R using the same coin′ and checks
whether EncPK,S,coin′(R) = C ′ holds or not.

Since the deniability requirement implies that the deniable ring authenti-
cation protocols should be zero-knowledge, these protocols are stronger than
ZKIP. Therefore these protocols requires at least four rounds, because ZKIP is
impossible with three rounds [12]. Hence, the above protocol is round optimal.

4.3 Security of the Protocol

We now proof the security of the above protocol following the definitions of
security described in section 2 and assuming that the Broadcast Encryption
protocol used is CCA2 secure and verifiable and that the One-time Symmetric
Key Encryption is CCA2 secure. I.e., we argue that the protocol meets the four
requirements described previously: completeness, soundness, source hiding and
deniability.

Theorem 1. Assume that the Broadcast Encryption scheme is verifiable and
CCA2 secure, and that the One-time Symmetric Key Encryption scheme is
CCA2 secure. Then the Deniable Ring Authentication protocol presented above
is secure according to the definitions of Sec. 2.

We briefly sketch the proof of security of our scheme. Due to space con-
straints, we leave the complete proof to a full version of this paper.

Completeness: The Broadcast Encryption and the One-time Symmetric Key
Encryption schemes used within our protocol must be correct in the sense
that if the parties follow the procedures of the protocol, then the origi-
nal message is decrypted correctly with overwhelming probability in the
random choices of the procedure. Therefore the completeness requirement
follows easily from this property of the Broadcast Encryption and the One-
time Symmetric Key Encryption schemes, since the valid prover decrypts
correctly the message M ||R and learns the correct R in first step with over-
whelming probability, and from the fact that the rest of the execution for
honest parties is correct if the first step is.



Soundness - Existential Unforgeability: As the Key Encapsulation Mech-
anism (i.e., the Broadcast Encryption) and the One-time Symmetric Key
Encryption schemes are CCA2 secure, it follows that the Hybrid Encryp-
tion scheme is also CCA2 secure [4]. So the Hybrid Encryption scheme is
non-malleable. The soundness of our protocol follows from the fact that
the ciphertext C ′ = EncPK,S,coin′(R), which the prover sends in the sec-
ond step of the protocol, is a non-malleable commitment to the random
value R that the verifier sends in the first step. The access to the authenti-
cation oracle essentially means that the can make decryption queries in the
Hybrid scheme. The adversary cannot take advantage of its access to the
authentication oracle in order to forge a message with non-negligible proba-
bility, since this would imply in a non-negligible advantage against the Hy-
brid Encryption scheme contradicting the assumption that the Broadcast
Encryption and One-time Symmetric Key Encryption schemes are CCA2
secure.

Source Hiding: The verifiability property of the Broadcast Encryption pro-
tocol guarantees that the actual prover can check if all possible provers in
the current ring (i.e., all the receivers of the broadcasted encrypted mes-
sage) received the same message in the first step of the protocol. Due to the
verifiability of the Broadcast Encryption scheme, this tests fails only with
negligible probability. Therefore the actual prover has the guarantee that
all possible honest provers in the ring would encrypt the same value R (and
so send indistinguishable messages) in the second step of the protocol with
overwhelming probability, and so the source hiding property is satisfied by
our protocol.

Zero-Knowledge - Deniability: We run the simulator with the prover P
encrypting a random value R′ in the second step of the protocol. If the
verifier V opens R in the third step, the simulator rewind to just after step
1 and run the protocol again with the prover encrypting the correct value
R in the second step.
To deal with verifiers that do not open the random value in third step, we
use the fact that the Broadcast Encryption and the One-time Symmetric
Key Encryption used are CCA2 secure, so the message in the second step
is a secure commitment to R′ and the verifier cannot learn non-negligible
information about R′.

As our scheme meets the security requirements for deniable ring authenti-
cation schemes described in section 2, it is a secure deniable ring authentication
scheme.

5 Efficient Implementation from BGW Protocol

5.1 BGW Protocol

Here, we review an efficient CCA2 secure variant of BGW protocol [3] which is
secure under the Bilinear Diffie-Hellman Exponent (BDHE) assumption, which
is due to Hanaoka and Kurosawa [15]. As mentioned in [3], the BGW can also
be modified using a signature scheme and a collision resistant hash function to
become CCA2 secure.

Let G and G1 be multiplicative cyclic groups with prime order p, and e :
G × G → G1 be a bilinear mapping such that for all a, b ∈ Z and u, v ∈ G,



we have that e(ua, vb) = e(u, v)ab and for a generator g ∈ G we have that
e(g, g) 6= 1.

The CCA2 secure variant of BGW protocol is as follows:

Setup: Choose ` ∈ N such that 2`C` ≥ p. Let G be a bilinear group with prime
order p. Pick a random generator g ∈ G and random α ∈ Zp. Compute

gi = g(α
i) ∈ G for i = 1, 2, ..., n + 2`, n + 2` + 2, ...., 2(n + 2`). Pick a

injective mapping INJ : G → P, where P is the set of all ∆S ⊆ {n +
1, ..., n + 2`} with |∆S| = `. Pick a random γ ∈ Zp and set v = gγ ∈ G.

Set Z = e(gn+2`+1, g) where gn+2`+1 = gα
n+2`+1

. The public key is PK =
(g, g1, ..., gn+2`, gn+2`+2, ..., g2(n+2`), v, Z, INJ), and the decryption keys for
user i ∈ {1, ..., n} is set as di = gγi ∈ G. Output (d1, ..., dn, PK).

Encrypt: Pick a random t ∈ Zp, and set K = Zt ∈ G1. Compute ∆S =
INJ(gt), and output (ψ,K) where ψ = (gt, (v ·

∏
j∈S∪∆S gn+2`+1−j)

t) ∈ G2.
Decrypt: Letting ψ = (C0, C1), compute ∆S = f(C0), and check whether

e(g, C1)
?
= e(v ·

∏
j∈S∪∆S gn+2`+1−j , C0), and if not, output ⊥. Otherwise,

output K = e(gi, C1)/e(di ·
∏
j∈S∪∆S\{i} gn+2`+1−j+i, C0).

The security of the above scheme is addressed as follows:

Theorem 2. Let G be a bilinear group with prime order p, and INJ be an
injective mapping. Then, for any positive integers n, the above scheme is CCA2
secure under the BDHE assumption on G such that 2`C` ≥ p.

As explained in [15] (see the full version of the paper), BGW protocol can
be slightly modified to add verifiability. To add verifiability to their protocol,
we only have to check in the beginning of the decryption procedure if

e(g, C1)
?
= e(v ·

∏
j∈S∪∆S

gn+2`+1−j , C0)

and output an error symbol if they are not equal.
By applying this scheme to our generic construction in the previous section,

we have the first deniable ring authentication with constant transmission data
size and optimal round complexity.

5.2 Implementing Our Protocol from BGW

Assuming that the parties have access to a Broadcast Encryption infrastructure
which is based on (CCA2 secure variant of) BGW protocol, one can carry out
Deniable Ring Authentication protocol as follows:

1. V picks a random t ∈ Zp and computes the header H and the symmetric
key K. V uses an One-Time Symmetric Key Encryption protocol with the
key K and randomness Z to encrypt M ||R (where R is a random number)
and obtain a ciphertext L. It sends C = (S, H, L) to P.

2. P verifies if e(g, C1)
?
= e(v ·

∏
j∈S∪∆S gn+2`+1−j , C0) and stops the protocol

if it is not equal. P decrypts H to obtain the symmetric key K, and then
uses K to decrypt M ||R and obtain R. P picks a random t′ ∈ Zp and
computes the header H ′ and the symmetric key K ′. P encrypts R uses
an One-Time Symmetric Key Encryption protocol with the key K ′ and
randomness Z ′ to encrypt R and obtain a ciphertext L′. It sends C ′ =
(S, H ′, L′) to V.



3. V sends R, t and Z to P. P re-encrypts M ||R using the same t and Z. It
checks whether the result is equal to C = (S, H, L) or not, and stops if it
is not.

4. P sends R, t′ and Z ′ to V. V re-encrypts R using the same t′ and Z ′. It
checks whether the result is equal to C ′ = (S, H ′, L′) or not, and stops if
it is not.

Theorem 3. The above protocol is a secure Deniable Ring Authentication pro-
tocol under the BDHE assumption on G in the sense of the definitions of Sec. 2.

It should be noticed that the above protocol requires only constant trans-
mission data size (which is independent of the size of the ring) and four rounds
(which is optimal).

5.3 A Drawback of this Scheme

There is one unsolved issue in our scheme. Namely, its security can be proven
against only static adversaries since the BGW scheme has only static security.
More specifically, before the setup phase, the adversary has to first commit
to a subset S∗ for which it wants to compromise the soundness property (the
goal of adversary is to pretend to be a member of S∗ without using no valid
decryption keys). Obviously, this security notion is weaker than the adaptive
adversarial model in which the adversary can adaptively choose S∗ after the
setup phase.

One possible solution would be to prove the verifiability of some adaptively
secure BE system with constant ciphertext size. One possible candidate is the
scheme recently proposed by Gentry and Waters [11].

6 Conclusion

We have constructed a practical deniable ring authentication schemes which
has optimal communication rounds and constant message size. To the best
of our knowledge, this is the first solution meeting those properties against
a Big Brother like adversary. In our scheme we assumed the existence of a
verifiable Broadcast Encryption protocol. Our solution can be implemented
using the Boneh-Gentry-Waters’ protocol [3]. Since their protocol has been
proven secure only against adversaries that selects the set of parties that it
wants to attack prior to the setup phase of the broadcast encryption scheme,
this implementation of our scheme can be proven secure only against this static
type of adversary.

One open problem is to prove the verifiability of some practical broadcast
encryption protocol that has constant message size and that has been proven
secure against adversaries that adaptively selects the participants that it wants
to attack. Such protocol can be used with our construction to obtain a deniable
ring authentication protocol secure against adversaries that adaptively corrupts
the parties.

We also suggest as a future research direction to investigate further uses of
broadcast encryption with the extra verifiability property.
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