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Campus Darcy Ribeiro, 70910-900, Braśılia, DF, Brazil
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1 Introduction

The highest level of security for public-key cryptosystems is indistinguishability
against adaptive chosen ciphertext attack (IND-CCA2), proposed by Rackoff
and Simon [28] in 1991. The development of cryptosystems with such feature
can be viewed as a complex task. Several public-key encryption (PKE) schemes
have been proposed with either practical or theoretical purposes. It is possible
to obtain IND-CCA2 secure cryptosystems based on many assumptions such as:
decisional Diffie-Hellman [7, 8, 26], computational Diffie-Hellman [6, 20], factor-
ing [22], McEliece [13, 12], quadratic residuosity [8] and learning with errors [26,
25].

Currently there are few general paradigms for the elaboration of IND-CCA2
PKE schemes. The first paradigm was proposed by Dwork, Dolev and Naor [11],
and is an enhancement of an construction proposed by Naor and Yung [24]
(which only achieved non-adaptive IND-CCA security). This scheme is based
on non-interactive zero-knowledge techniques. Later Sahai [30] and Lindell [23]
made other improvements following the same approach of [11].



Cramer and Shoup [7] proposed the first practical IND-CCA2 scheme without
the use of random oracles. They also introduced hash-proof systems, which is an
important element used in their construction.

Another remarkable paradigm requires the existence of identity-based en-
cryption (IBE) schemes [3], and was first introduced by Canetti, Halevi and
Katz [2].

Recently, a new paradigm was introduced: bounded CCA2 security [5], where
the adversary can only make a bounded number of queries to the decryption or-
acle. In [5] it was proved that there exists a mapping converting chosen plaintext
attack (CPA) secure PKE into another one secure under bounded CCA attacks.
This weaker version of IND-CCA2 is technically termed IND-q-CCA2, where
the polynomial q denotes the limit of the adversary’s queries to the decryption
oracle and is fixed in advance. Moreover, in [5], the authors proved that in this
new setting it is possible to obtain a PKE based on the decisional Diffie-Hellman
problem with optimal ciphertext length (just one group element of ciphertext
overhead).

1.1 Our Contribution

We improve upon the results presented [5]. Namely, we show that it is possible
to obtain an IND-q-CCA2 PKE scheme with optimal ciphertext length (one
group element) based on the computational Diffie-Hellman (CDH) assumption.
Additionally, we also show a more efficient scheme based on the hashed Diffie-
Hellman (HDH) assumption. The ideas behind the proofs are similar to the ones
presented in [5], although, in the proof of security of our HDH based scheme,
to map the key to the HDH challenge, we make use of a strategy that is not
obvious. Furthermore, to the best of our knowledge, no such claims appeared
before in the literature.

We also note that recently, Haralambiev et al. [20] proposed an improvement
of [19], and obtained a CCA secure PKE based on the CDH assumption without
any kind of assumption on the number of queries an adversary performs to
the decryption oracle. However, their scheme presents a larger ciphertext length
when compared to ours.

An abstract of this work appeared in the Information Security Conference
(ISC) 2010 [27].

2 Preliminaries

In this section we present some definitions which were used in the construction
of our scheme. We refer the reader to [7], [5], [31], [29], [21], [18] and [4] for more
details.

2.1 Notation

If X is a set then x
$← X denotes the act of choosing an element of X according

to the uniform distribution. We write w
$← AO(x, y, ...) to indicate that an



(probabilistic) algorithm A with inputs x, y, . . . and black-box access to an oracle
O outputs w. We denote by Pr[E] the probability that the event E occurs. We
use λ for the security parameter.

2.2 public-key Encryption

A public-key encryption (PKE) scheme is defined as follows:

Definition 1. A public-key encryption scheme is a triplet of algorithms (Gen,
Enc, Dec) such that:

– Gen is a probabilistic polynomial-time (PPT) key generation algorithm which
takes as input a security parameter 1λ and outputs a public-key pk and a
secret key sk. The public-key specifies the message spaceM and the cipher-
text space C.

– Enc is a PPT encryption algorithm which receives as input a public-key pk
and a message M ∈M, and outputs a ciphertext C ∈ C.

– Dec is a deterministic polynomial-time decryption algorithm which takes
as input a secret key sk and a ciphertext C, and outputs either a message
M ∈M or an error symbol ⊥.

– (Soundness) For any pair (pk,sk) of keys generated by Gen and any message
M ∈ M it holds that Dec(sk,Enc(pk,M))=M with overwhelming probability
over the randomness used by Gen and Enc.

Next, we define the notion of IND-q-CCA2 security.

Definition 2. (IND-q-CCA2 security) For a function q: N → N and a two
stage adversary A = (A1,A2) against PKE we associate the following experiment

Expind−q−cca2A,PKE (λ):

(pk,sk)
$← Gen(1λ)

(M0,M1, state)
$← ADec(sk,.)

1 (pk) s.t. |M0| = |M1|
β

$← {0, 1}
C∗

$← Enc(pk,Mβ)

β′
$← ADec(sk,.)

2 (C∗, state)
If β = β′ return 1 else return 0

The adversary A is allowed to ask at most q(λ) queries to the decryption
oracle Dec. None of the queries of A2 may contain C∗. We define the advantage
of A in the experiment as

Advind−q−cca2A,PKE (λ) =

∣∣∣∣Pr
[
Expind−q−cca2A,PKE (λ) = 1

]
− 1

2

∣∣∣∣ .



We say that PKE is indistinguishable against q-bounded adaptive chosen-
ciphertext attack (IND-q-CCA2) if for all PPT adversaries A = (A1,A2) that
makes a polynomial number of oracle queries the advantage of A in the experi-
ment is a negligible function of λ.

2.3 Number Theoretic Assumptions

In this section we state two of the Diffie-Hellman intractability assumptions:
Computational Diffie-Hellman and Hashed Diffie-Hellman.

Definition 3 (CDH assumption). Let G be a group of order p (which depends
on the security parameter λ) and g be a generator of G. For all PPT adversaries
A, the CDH advantage against G is defined as

AdvcdhA,G(λ) = Pr
[
x, y

$← Zp ; c
$← A(g, gx, gy) : c = gxy

]
.

The CDH assumption holds if for every PPT adversary A the function AdvcdhA,G(·)
is negligible in λ.

Definition 4 (Hashed-DH Assumption). Let G be a group of order p (which
depends on the security parameter λ) and g be a generator of G. Let H: G →
{0, 1}n be a hash function. For a security parameter λ, the sets Dλ and Tλ are
defined as:

Dλ := {(gx, gy, H(gxy)) : x, y ∈ Zp, x 6= 0};
Tλ := {(gx, gy, r) : x, y ∈ Zp, x 6= 0, r ∈ {0, 1}n, r 6= H(gxy)}.

In this weakening of the DDH assumption, the set Dλ is the set with respect
to values of Diffie-Hellman triples. Tλ is a set with a random element. For
ρ ∈ {Dλ, Tλ}, let A be a 0/1-valued PPT adversarial algorithm and let ζ be A’s
guess about the triple ρ. The HDH advantage of A against G and H is defined
as

AdvhdhA,G(λ) =
∣∣∣Pr
[
ρ

$← Dλ ; ζ
$← A(g, ρ) : ζ = 1

]
− Pr

[
ρ

$← Tλ ; ζ
$← A(g, ρ) : ζ = 1

]∣∣∣ .
The HDH assumption holds for G and H if for every PPT adversary A the
function AdvhdhA,G(·) is negligible in λ.

Throughout this paper we will abbreviate εcdh = AdvcdhA,G(λ) and εhdh =

AdvhdhA,G(λ).

2.4 Goldreich-Levin Hard-Core Function

Let G be a group of order p and generator g, and x, y ∈ Zp. Let h: G×{0, 1}u →
{0, 1}v denote the Goldreich-Levin hard-core function [16] for gxy (given gx and
gy), with randomness space {0, 1}u and range {0, 1}v, where u, v ∈ Z.



Theorem 1. Suppose that A is a PPT algorithm such that A(gx, gy, r, k) dis-
tinguishes k= h(gxy, r) from a uniform string s ∈ {0, 1}v with non-negligible
advantage, for random x, y ∈ Zp and random r ∈ {0, 1}u. Then there exists a
PPT algorithm B that computes gxy with non-negligible probability given gx and
gy (for random x, y ∈ Zp).

2.5 Target Collision Resistant Hash Functions

Definition 5 (Target Collision Resistance). Let TCR: {0, 1}n(λ) → {0, 1}λ
be a family of hash functions. The target collision resistance property is defined
using the following experiment executed with a PPT adversary A:

ExpTCR
A,TCR(λ) : [x

$← {0, 1}n(λ);x′ $← A(1λ, x) : x 6= x′;

return 1 if TCR(x′) = TCR(x), else return 0].

The family of hash functions TCR is target collision resistant if for every PPT
adversary A it holds that ExpTCR

A,TCR(·) is a negligible function of λ.

Let εTCR = Pr
[

ExpTCR
A,TCR(λ) = 1

]
.

2.6 Strong Pseudorandom Permutation

Let π: {0, 1}λ×{0, 1}v → {0, 1}v be a family of permutations, and πk: {0, 1}v →
{0, 1}v be an instance of π, which is indexed by k ∈ {0, 1}λ. Let P be the set of
all permutations for bit strings of size v, and A be a 0/1-valued PPT adversary.
Consider the following experiments:

ExpsprpA,π (λ) : [k
$← {0, 1}λ;β

$← Aπk,π
−1
k (1λ) ; return β]

ExpidealA (λ) : [p
$← P;β

$← Ap,p
−1

(1λ) ; return β]

where permutations πK , π
−1
k , p, p−1 are given to A as black-boxes.

Let

AdvsprpA,π (λ) =
1

2

∣∣∣Pr
[

ExpsprpA,π (λ) = 1
]
− Pr

[
ExpidealA (λ) = 1

]∣∣∣ .
Definition 6 (Strong Pseudorandom Permutation - SPRP). A polynomial-
time algorithm π: {0, 1}λ×{0, 1}v → {0, 1}v is said to be a strong pseudorandom
permutation if for every PPT A it holds that AdvsprpA,π (·) is negligible in λ.

We abbreviate εsprp = AdvsprpA,π (λ).



2.7 Cover Free Families

Let S be a set, and F a set of subsets of S. Let d, s, q be positive integers, where
|S| = d and |F| = s. We denote the elements of F by Fj , for 1 ≤ j ≤ s. We say
F is a q-cover-free family, if for any q elements of F , Fj1 , . . . , Fjq ∈ F , and any
other element of F , Fi /∈ {Fj1 , . . . , Fjq}, we have

Fi *
q⋃

k=1

Fjk .

Additionally, we say the family F is `-uniform if |Fj | = ` for all 1 ≤ j ≤ s.
There is a deterministic polynomial time algorithm that on input s, q returns

`, d, F such that the set F (which has cardinality s) is a `-uniform q-cover-free
family over {1, . . . , d}, for ` = d

4q and d ≤ 16q2 log s. For a security parameter

λ and a bound on decryption queries q(λ), the cover-free family used in our
construction has the following parameters: s(λ) = 2λ, d(λ) = 16λq2(λ), `(λ) =
4λq(λ).

2.8 Hybrid Encryption

Our schemes make use of the hybrid encryption method [9]. Such schemes use
public-key encryption techniques to encrypt a random symmetric key K, which is
then used to encrypt the actual message using a symmetric encryption scheme.
This mechanism is homologous to public-key encryption scheme, but instead of
encrypting a message, the encryption algorithm generates a random key and
encrypts it.

Key Encapsulation Mechanism A Key Encapsulation Mechanism (KEM) is
defined as follows:

Definition 7 (Key Encapsulation Mechanism). A key encapsulation mech-
anism is a triplet of algorithms (KGen, KEnc, KDec) such that:

– KGen is a PPT key generation algorithm which takes as input a security pa-
rameter 1λ and outputs a public-key pk and a secret key sk. The public-key
specifies the symmetric-key space K and the ciphertext space C.

– KEnc is a PPT encryption algorithm which receives as input a public-key

pk, and outputs (C, K), where K
$← K is a symmetric key, and C ∈ C is a

encapsulated symmetric key (i.e., the ciphertext).

– KDec is a deterministic polynomial-time decryption algorithm which takes as
input a secret-key sk and a ciphertext C, and outputs a symmetric key K ∈ K
or an error symbol ⊥.



– (Soundness) For any pair of public and secret keys generated by KGen and
any pair (C, K) generated by KEnc it holds that KDec(sk,C)=K with over-
whelming probability over the randomness used by KGen and KEnc.

Definition 8 (Key Encapsulation Mechanism CCA Security). To a two
stage adversary A = (A1,A2) against KEM we associate the following experi-

ment ExpkemA,PKE(λ): (pk, sk)
$← KGen(1λ)

state
$← AKDec(sk,.)

1 (pk)

(C∗,K∗)
$← KEnc(pk)

β
$← {0, 1}

If β = 0, K�←K∗; else K�
$← K

β′
$← AKDec(sk,·)

2 (C∗,K�, state)
If β′ = β return 1, else return 0.

The adversary A2 is not allowed to query KDec(sk, ·) with K�. The advantage
of A in the experiment is

AdvkemA,PKE(λ) =

∣∣∣∣Pr
[

ExpkemA,PKE(λ) = 1
]
− 1

2

∣∣∣∣ .
A KEM is indistinguishable against adaptive chosen-ciphertext attack if

for all PPT adversaries A = (A1,A2) the advantage of A in the experiment
AdvkemA,PKE(·) is a negligible function of λ. Throughout this paper, we will denote

AdvkemA,PKE(λ) as εkem.

3 IND-q-CCA2 Encryption From CDH

Our first construction yields a IND-q-CCA PKE scheme based on CDH assump-
tion with optimal ciphertext length. The symmetric-key encryption scheme is
constructed based on strong pseudorandom permutations, as in [18], in order to
obtain the redundancy-free property and security against chosen-ciphertext at-
tacks. Furthermore, we use the randomness established in the encryption phase
and a target collision resistant hash function in order to define the index t of the
element of the q-cover-free family F that will be used in the encryption. We use
a hardcore function to construct the symmetric key.

It can be assured, due to the property of cover-free families and the undu-
plicatable set selection, that at least one element of the decryption key set will
remain secret, since it will not be required to respond any decryption queries (of
course considering the limit of q queries to the decryption oracle).

Construction. We assume the existence of a cyclic group G of prime-order
p where the CDH assumption is believed to hold, i.e., given (g, gx, gy) there is no
efficient way to compute gxy, for a generator g ∈ G, and random x, y ∈ Zp. Let
TCR: G→ {0, 1}λ be a target collision resistant hash function, h: G×{0, 1}u →
{0, 1}k be a hard-core function family, and π: {0, 1}k × {0, 1}v → {0, 1}v be a



permutation family where the index space is {0, 1}k. Our scheme from CDH
assumption consists of the following algorithms:

Gen(1λ): Define s(λ) = 2λ, d(λ) = 16λq2(λ), `(λ) = 4λq(λ). For i = 1, . . . , d(λ),

compute Xi = gxi for xi
$← Zp. Choose a

$← {0, 1}u. Output the public-key
pk = (X1, . . . , Xd(λ), a) and the secret-key sk = (x1, . . . , xd(λ)).

Enc(pk, M): Compute r = gb for b
$← Zp. Let j = TCR(r) and let Fj = {j1, . . . , j`(λ)}

be the j-th element of F . Set C̃ = r and compute K = (h(Xb
j1
, a) ⊕ . . . ⊕

h(Xb
j`(λ)

, a)). To encrypt the message M, run the symmetric-key encryption

to obtain the ciphertext ψ←πK(M). Output C = (C̃, ψ).

Dec(sk, C): Compute j = TCR(C̃) to obtain the subset Fj , and compute the session’s

symmetric key K = (h(C̃
xj1 , a)⊕ . . .⊕ h(C̃

xj`(λ) , a)). Decrypt M←π−1K (ψ).

Theorem 1 Assuming that the CDH assumption holds, TCR is a target colli-
sion resistant hash function, h is a hardcore function, and π is strongly pseudo-
random, the above scheme is IND-q-CCA2.

Proof. We follow the same approach of [5] to prove the above lemma via a game-
based proof. We prove that the KEM is IND-q-CCA2 secure and then use the
KEM/DEM composition theorem from [9].

Let Game 0 be the KEM-IND-q-CCA game with adversary A where the

challenge ciphertext is C̃
∗

= r∗ = gy (from the CDH tuple). Let X0 denote the
event that A’s final guess is correct (i.e. X0 denotes that β = β′). For later
games, let Xi (i > 0) be defined analogously. We have:

1

2
Advkem-ind-q-cca2

A,PKE (λ) =

∣∣∣∣Pr [X0 ]− 1

2

∣∣∣∣
Game 1 is identical to Game 0, except that the challenge C̃

∗
is initially

chosen, and all decapsulation queries with TCR(C̃) = TCR(C̃
∗
) are rejected.

By reduction on the security of the TCR, one can show that

|Pr [X1 ]− Pr [X0 ]| ≤ εTCR +
q

p

for a suitable adversary V, where εTCR is the probability that V finds TCR(C̃) =

TCR(C̃
∗
) for C̃ 6= C̃

∗
and q

p is an upper bound on the probability that A1 ask

the decryption oracle to decrypt C̃
∗
.

Game 2 is equivalent to Game 1. In this game, we will define

Q :=
⋃

C̃
i 6=C̃

∗

Fji

where C̃
i

is the i-th decapsulation request of A, ji = TCR(C̃
i
) and Fji are the

sets of PKE key pairs associated with the respective i-th query.



Define t := min(Fj∗ \Q), for j∗ = TCR(C̃
∗
) (it is always possible since Fj∗ *

Q). Additionally choose uniformly and independently α ∈ Fj∗ . Call ABORT the
event that α 6= t . Note that

Pr [ ABORT|X2 ] =
`− 1

`
= Pr [ ABORT ]

so the events X2 and ABORT are independent, and in particular, Pr [X2 ] =
Pr [X2|¬ABORT ]. Since we did not actually change anything, Pr [X2 ] = Pr [X1 ].

In Game 3, we substituteA′s output β′ with a random bit whenever ABORT
occurs. Obviously, Pr [X3|¬ABORT ] = Pr [X2|¬ABORT ] and Pr [X3|ABORT ] =
1
2 .

Since Pr [ ABORT ] = `−1
` in Game 3 as well, we can establish that

Pr [X3 ]− 1

2
=

Pr [X2 ]− 1
2

`

In Game 4, we immediately stop the experiment and set ABORT to true
(hence immediately taking a random bit for A′s output) as soon as A asks for a

decapsulation where C̃ 6= C̃
∗

and α ∈ Fj where j = TCR(C̃). Note that already
in Game 3, such a query would have implied t 6= α and hence ABORT. Conse-
quently, Pr [X4 ] = Pr [X3 ]. Note that in this experiment xα is not necessary to
answer the decryption queries.

In Game 5, we use gx (from the CDH tuple) instead of gxα . Note that the
probability distribution of the keys does not change. To answer the challenge
query, we receive from the CDH oracle a value z that is equal to either the
hardcore function of gxy or a random value in {0, 1}k. Then we form K∗ as

h(Xy
j1
, a)⊕ . . .⊕ z ⊕ . . .⊕ h(Xy

j`
, a)

Note that Pr [X5 ] = Pr [X4 ]. Let ε′ denote the advantage of the adversary
in this game. But according to Theorem 1, ε′ is a negligible function if the CDH
assumption holds.

Collecting the probabilities we have that:

Advkem-ind-q-cca2
PKE,A (λ) ≤ 2 · εtcr + ` · ε′ + 2q

p
.

4 IND-q-CCA2 Encryption From HDH

This construction is a variation of the one presented above. It yields in a IND-
q-CCA PKE scheme based on HDH assumption also with optimal ciphertext
length. In this construction, we equally make use of key encapsulation method
to construct a key to be used in a symmetric encryption. In this construction,
instead of defining the encapsulated key as the product of hardcore functions
(similarly to the previous scheme), we define the encapsulated key as the hash
of the product of all keys. This makes the scheme more efficient.



Construction. We assume the existence of a cyclic group G of prime-order
p and a hash function H: G→ {0, 1}k for which the HDH assumption holds. Let
TCR: G→ {0, 1}λ be a target collision resistant hash function and π: {0, 1}k×
{0, 1}v → {0, 1}v be a permutation family where the index space is {0, 1}k Our
scheme from the HDH assumption consists of the following algorithms:

Gen(1λ): Define s(λ) = 2λ, d(λ) = 16λq2(λ), `(λ) = 4λq(λ). For i = 1, . . . , d(λ), com-

pute Xi = gxi for xi
$← Zp. Output the public-key pk = (X1, . . . , Xd(λ)) and

the secret-key sk = (x1, . . . , xd(λ)).

Enc(pk, M): Compute r = gb for b
$← Zp. Let j = TCR(r) and let Fj = {j1, . . . , j`(λ)}

be the j-th element of F . Set C̃ = r and compute K = H((
∏
ji∈Fj Xji)

b).
To encrypt the message M, run the symmetric-key encryption to obtain the
ciphertext ψ←πK(M). Output C = (C̃, ψ).

Dec(sk, C): Compute j = TCR(C̃) to obtain the subset Fj , and compute the session’s

symmetric key K = H(C̃
∑
ji∈Fj

xji ). Decrypt M←π−1K (ψ).

Theorem 2 Assuming that the HDH assumption holds, TCR is a target colli-
sion resistant hash function, and π is a strongly pseudorandom permutation, the
scheme above is IND-q-CCA2.

Proof. The proof is similar to the previous one.
Let Game 0 be the KEM-IND-q-CCA game with adversary A where the

challenge C̃
∗

= r∗ = gy (gy from the HDH tuple). Let X0 denote the event that
A’s final guess is correct (i.e. X0 denotes that β = β′). For later games, let Xi

(i > 0) be defined analogously. We have:

1

2
Advkem-ind-q-cca2

A,PKE (λ) =

∣∣∣∣Pr [X0 ]− 1

2

∣∣∣∣
Game 1 is identical to Game 0, except that C̃

∗
is initially chosen, and all

decapsulation queries with TCR(C̃) = TCR(C̃
∗
) are rejected.

By reduction on the security of the TCR, one can show that

|Pr [X1 ]− Pr [X0 ]| ≤ εTCR +
q

p

for a suitable adversary V, where εTCR is the probability that V finds TCR(C̃) =

TCR(C̃
∗
) for C̃ 6= C̃

∗
and q

p is an upper bound on the probability that A1 ask

the decryption oracle to decrypt C̃
∗
.

Game 2 is equivalent to Game 1. In this game, we will define

Q :=
⋃

C̃
i 6=C̃

∗

Fji



where C̃
i

is the i-th decapsulation request of A, ji = TCR(C̃
i
) and Fji are the

sets of PKE key pairs associated with the respective i-th query.

Define t := min(Fj∗ \Q), for j∗ = TCR(C̃
∗
) (it is always possible since Fj∗ *

Q). Additionally choose uniformly and independently α ∈ Fj∗ . Call ABORT the
event that α 6= t . Note that

Pr [ ABORT|X2 ] =
`− 1

`
= Pr [ ABORT ]

so the events X2 and ABORT are independent, and in particular, Pr [X2 ] =
Pr [X2|¬ABORT ]. Since we did not actually change anything, Pr [X2 ] = Pr [X1 ].

In Game 3, we substituteA′s output β′ with a random bit whenever ABORT
occurs. Obviously, Pr [X3|¬ABORT ] = Pr [X2|¬ABORT ] and Pr [X3|ABORT ] =
1
2 .

Since Pr [ ABORT ] = `−1
` in Game 3 as well, we can establish that

Pr [X3 ]− 1

2
=

Pr [X2 ]− 1
2

`

In Game 4, we immediately stop the experiment and set ABORT to true
(hence immediately taking a random bit for A′s output) as soon as A asks for a

decapsulation where C̃ 6= C̃
∗

and α ∈ Fj where j = TCR(C̃). Note that already
in Game 3, such a query would have implied t 6= α and hence ABORT. Conse-
quently, Pr [X4 ] = Pr [X3 ]. Note that in this experiment xα is not necessary to
answer the decryption queries.

In Game 5, we modify Xα to

gx ∗ (
∏

i∈Ft∗\α

gxi)−1

where gx is from the HDH tuple. Note that the probability distribution of the
keys does not change, so Pr [X5 ] = Pr [X4 ]. In this game if β = 0, K� = H(gxy)
and if β = 1, K� is random.

Collecting the probabilities we have that:

Advkem-ind-q-cca2
PKE,A (λ) ≤ 2 · εtcr + ` · εhdh +

2q

p
.

5 Expanding the Encapsulated Key in the CDH Scheme

The IND-q-CCA KEM scheme based on the CDH assumption proposed in sec-
tion 3 results in a small symmetric key. In this section we show how to expand
the key without increasing the size of the ciphertext overhead. A symmetric key
of size kn is obtained by generating n groups of secret/public-keys.

Construction. As in section 3, we assume the existence of a cyclic group G
of prime-order p where the CDH assumption is believed to hold. Let TCR: G→
{0, 1}λ be a target collision resistant hash function, h: G×{0, 1}u → {0, 1}k be a



hard-core function family, and π: {0, 1}kn×{0, 1}v → {0, 1}v be a permutation
family where the index space is {0, 1}kn. Our modified scheme from the CDH
assumption works as follows:

Gen(1λ): Define s(λ) = 2λ, d(λ) = 16λq2(λ), `(λ) = 4λq(λ). For i = 1, . . . , d(λ) and

m = 1, . . . , n, compute Xm,i = gxm,i for xm,i
$← Zp. Choose a

$← {0, 1}u. Let
pkm = (Xm,1, . . . , Xm,d(λ)) and skm = (xm,1, . . . , xm,d(λ)). The public-key is
pk = {pk1, . . . , pkn, a}, and the secret key is sk = {sk1, . . . , skn}.

Enc(pk, M): Compute r = gb for b
$← Zp. Let j = TCR(r) and let Fj = {j1, . . . , j`(λ)} be

the j-th element of F . Set C̃ = r and compute Km = (h(Xb
m,j1

, a) ⊕ . . . ⊕
h(Xb

m,j`(λ)
, a)) for m = 1, . . . , n. Define K = K1||K2|| . . . ||Kn. To encrypt

the message M, run the symmetric-key encryption to obtain the ciphertext
ψ←πK(M). Output C = (C̃, ψ).

Dec(sk, C): Compute j = TCR(C̃) to obtain the subset Fj , compute Km = (h(C̃
xm,j1 , a)⊕

. . .⊕ h(C̃
xm,j`(λ) , a)) and K = K1||K2|| . . . ||Kn. Decrypt M←π−1K (ψ).

Theorem 3 Assuming that the CDH assumption holds, TCR is a target colli-
sion resistant hash function, h is a hardcore function, and π is strongly pseudo-
random, the above scheme is IND-q-CCA2.

Proof. In addition to the approach used in previous sections, we use an hybrid
argument to prove the security of the above scheme.

Let Game 0 be the KEM-IND-q-CCA game with adversary A where the

challenge ciphertext is C̃
∗

= r∗ = gy (from the CDH tuple). Let X0 denote the
event that A’s final guess is correct (i.e. X0 denotes that β = β′). For later
games, let Xi (i > 0) be defined analogously. We have:

1

2
Advkem-ind-q-cca2

A,PKE (λ) =

∣∣∣∣Pr [X0 ]− 1

2

∣∣∣∣
Game 1 is identical to Game 0, except that the challenge C̃

∗
is initially

chosen, and all decapsulation queries with TCR(C̃) = TCR(C̃
∗
) are rejected.

By reduction on the security of the TCR, one can show that

|Pr [X1 ]− Pr [X0 ]| ≤ εTCR +
q

p

for a suitable adversary V, where εTCR is the probability that V finds TCR(C̃) =

TCR(C̃
∗
) for C̃ 6= C̃

∗
and q

p is an upper bound on the probability that A1 ask

the decryption oracle to decrypt C̃
∗
.

Game 2 is equivalent to Game 1. In this game, we will define

Q :=
⋃

C̃
i 6=C̃

∗

Fji



where C̃
i

is the i-th decapsulation request of A, ji = TCR(C̃
i
) and Fji are the

sets of PKE key pairs associated with the respective i-th query.

Define t := min(Fj∗ \Q), for j∗ = TCR(C̃
∗
) (it is always possible since Fj∗ *

Q). Additionally choose uniformly and independently α ∈ Fj∗ . Call ABORT the
event that α 6= t . Note that

Pr [ ABORT|X2 ] =
`− 1

`
= Pr [ ABORT ]

so the events X2 and ABORT are independent, and in particular, Pr [X2 ] =
Pr [X2|¬ABORT ]. Since we did not actually change anything, Pr [X2 ] = Pr [X1 ].

In Game 3, we substituteA′s output β′ with a random bit whenever ABORT
occurs. Obviously, Pr [X3|¬ABORT ] = Pr [X2|¬ABORT ] and Pr [X3|ABORT ] =
1
2 .

Since Pr [ ABORT ] = `−1
` in Game 3 as well, we can establish that

Pr [X3 ]− 1

2
=

Pr [X2 ]− 1
2

`

In Game 4, we immediately stop the experiment and set ABORT to true
(hence immediately taking a random bit for A′s output) as soon as A asks for a

decapsulation where C̃ 6= C̃
∗

and α ∈ Fj where j = TCR(C̃). Note that already
in Game 3, such a query would have implied t 6= α and hence ABORT. Conse-
quently, Pr [X4 ] = Pr [X3 ]. Note that in this experiment xα is not necessary to
answer the decryption queries.

In the following games, we demonstrate, by a standard hybrid argument, that
any PPT adversary has a negligible advantage in distinguishing a real key from
a random string of same size.

We start the exposition of the hybrid argument constructing the key as de-
scribed in the protocol, i.e., a well formed key. On each upcoming game, we
replace a component of the key with a random element of the same size, so the
difference of adjacent games will be of only one key component. In the last game,
we will have a completely random key.

In Game 5, the challenge key is formed as:

K = K1||K2|| . . . ||Kn

Since it consists in a well formed key, Pr [X5 ] = Pr [X4 ].

In Game 6, the challenge key will be constructed in the following way:

K = K1||K2|| . . . ||Kn−1||rnd1

where rnd1 is a random element from {0, 1}k.

The last component Kn in Game 5 is formed as

Kn=h(Xy
n,j1

, a)⊕ . . .⊕ h((gxn,α)y, a)⊕ . . .⊕ h(Xy
n,j`(λ)

, a)



We can see that distinguishing Kn from a random element of {0, 1}k implies
in distinguishing h((gxk,α)y, a) from a random element of {0, 1}k.

From theorem 1, an adversary that distinguishes h((gxk,α)y, a) from a random
element of {0, 1}k, solves the CDH problem. Therefore, if the CDH assumption
holds, Pr [X6 ]− Pr [X5 ] ≤ ε′′, where ε′′ is a negligible function.

In Game 5+i, for 2 ≤ i ≤ n, the challenge key is formed as the following:

K = K1||K2|| . . . ||Kn−i||rndi

where rndi is a random element from {0, 1}ki.
From theorem 1, we have that, if the CDH assumption holds, Pr [X5+i ] −

Pr [X5+i−1 ] ≤ ε′′, where ε′′ is a negligible function.
We also have that

Pr [X5+n ] =
1

2

since in Game 5+n the key is completely random.
Collecting the probabilities we have that:

Advkem-ind-q-cca2
PKE,A (λ) ≤ 2 · εtcr + ` · λ · ε′′ + 2q

p
.
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