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We show that a recently proposed construction by Rosen and Segev can be
used for obtaining the first public key encryption scheme based on the McEliece
assumptions which is secure against adaptive chosen ciphertext attacks in the
standard model.

1 Introduction

Indistinguishability of messages under adaptive chosen ciphertext attacks is the
strongest known notion of security for public key encryption schemes (PKE).
Many computational assumptions have been used in the literature for obtain-
ing cryptosystems meeting such a strong security requirements. Given one-way
trapdoor permutations, we know how to obtain CCA2 security from any seman-
tically secure public key cryptosystem [14, 20, 12]. Efficient constructions are also
known based on number-theoretic assumptions [6] or on identity based encryp-
tion schemes [3]. Obtaining a CCA2 secure cryptosystem (even an inefficient
one) based on the McEliece assumptions in the standard model has been an
open problem in this area for quite a while.

Recently, Rosen and Segev proposed an elegant and simple new computa-
tional assumption for obtaining CCA2 secure PKEs: correlated products [19].
They provided constructions of correlated products based on the existence of
certain lossy trapdoor functions [16] which in turn can be based on the deci-
sional Diffie-Hellman problem and on Paillier’s decisional residuosity problem
[16].

In this paper, we show that the ideas of Rosen and Segev can also be applied
for obtaining the first construction of a PKE built upon the McEliece assump-
tions. Based on the definition of correlated products [19], we define a new kind
of PKE called k-repetition CPA secure cryptosystem and show that the con-
struction proposed in [19] directly translates to this new scenario. We then show
that a randomized version of the McEliece cryptosystem [15] is k-repetition CPA
secure and obtain a CCA2 secure scheme in the standard model. The resulting
cryptosystem enciphers many bits as opposed to the single-bit PKE obtained in



[19]. We expand the public and private keys and the ciphertext by a factor of k
when compared to the original McEliece PKE. Additionally, our result implies
a new construction of correlated products based on the McEliece assumptions.

In a concurrent and independent work [9], Goldwasser and Vaikuntanathan
proposed a new CCA-secure public-key encryption scheme based on lattices using
the construction by Rosen and Segev. Their scheme assumed that the problem
of learning with errors (LWE) is hard [18].

2 Preliminaries

2.1 Notation

If x is a string, then |x| denotes its length, while |S| represents the cardinality of a
set S. If n ∈ N then 1n denotes the string of n ones. s � S denotes the operation
of choosing an element s of a set S uniformly at random. w � A(x, y, . . .)
represents the act of running the algorithm A with inputs x, y, . . . and producing
output w. We write w � AO(x, y, . . .) for representing an algorithm A having
access to an oracle O. We denote by Pr[E] the probability that the event E
occurs. If a and b are two strings of bits or two matrices, we denote by a|b their
concatenation. The transpose of a matrix M is MT . If a and b are two strings of
bits, we denote by 〈a, b〉 their dot product modulo 2 and by a ⊕ b their bitwise
XOR. Un is an oracle that returns a random element of {0, 1}n.

2.2 Public-Key Encryption Schemes

A Public Key Encryption Scheme (PKE) is defined as follows:

Definition 1. (Public-Key Encryption). A public-key encryption scheme is a
triplet of algorithms (Gen, Enc, Dec) such that:

– Gen is a probabilistic polynomial-time key generation algorithm which takes
as input a security parameter 1n and outputs a public key pk and a secret key
sk. The public key specifies the message space M and the ciphertext space C.

– Enc is a (possibly) probabilistic polynomial-time encryption algorithm which
receives as input a public key pk and a message m ∈ M, and outputs a
ciphertext c ∈ C.

– Dec is a deterministic polynomial-time decryption algorithm which takes as
input a secret key sk and a ciphertext c, and outputs either a message m ∈M
or an error symbol ⊥.

– (Soundness) For any pair of public and private keys generated by Gen and
any message m ∈M it holds that Dec(sk,Enc(pk,m)) = m with overwhelming
probability over the randomness used by Gen and Enc.

Below we define indistinguishability against chosen-plaintext attacks (IND-
CPA) [8] and against adaptive chosen-ciphertext attacks (IND-CCA2) [17]. Our
game definition follows the approach of [10].



Definition 2. (IND-CPA security). To a two-stage adversary A = (A1,A2)
against PKE we associate the following experiment ExpcpaPKE,A(n):

(pk, sk) � Gen(1n)
(m0,m1, state) � A1(pk) s.t. |m0| = |m1|
b � {0, 1}
c∗ � Enc(pk,mb)
b′ � A2(c∗, state)
If b = b′ return 1 else return 0

We define the advantage of A in the experiment as

AdvcpaPKE,A(n) = |Pr[ExpcpaPKE,A(n) = 1]− 1
2 |

We say that PKE is indistinguishable against chosen-plaintext attacks (IND-
CPA) if for all probabilistic polynomial time (PPT) adversaries A = (A1,A2)
the advantage of A in the experiment is a negligible function of n.

Definition 3. (IND-CCA2 security). To a two-stage adversary A = (A1,A2)
against PKE we associate the following experiment Expcca2PKE,A(n):

(pk, sk) � Gen(1n)
(m0,m1, state) � ADec(sk,·)

1 (pk) s.t. |m0| = |m1|
b � {0, 1}
c∗ � Enc(pk,mb)
b′ � ADec(sk,·)

2 (c∗, state)
If b = b′ return 1 else return 0

The adversary A2 is not allowed to query Dec(sk, · ) with c∗. We define the
advantage of A in the experiment as

Advcca2PKE,A(n) = |Pr[Expcca2PKE,A(n) = 1]− 1
2 |

We say that PKE is indistinguishable against adaptive chosen-ciphertext at-
tacks (IND-CCA2) if for all probabilistic polynomial time (PPT) adversaries
A = (A1,A2) that makes a polynomial number of oracle queries the advantage
of A in the experiment is a negligible function of n.

2.3 McEliece Cryptosystem

In this Section we define the McEliece cryptosystem [13]. We closely follow [15].
The McEliece PKE consists of a triplet of probabilistic algorithms (GenMcE,
EncMcE,DecMcE) such that:

– The probabilistic polynomial-time key generation algorithm, GenMcE, works
as follows:



1. Generate a l×n generator matrix G of a Goppa code, where we assume
that there is an efficient error-correction algorithm Correct which can
always correct up to t errors.

2. Generate a l × l random non-singular matrix S.
3. Generate a n× n random permutation matrix T.
4. Set P = SGT, M = {0, 1}l, C = {0, 1}n.
5. Output pk = (P, t,M, C) and sk = (S,G,T).

– The probabilistic polynomial-time encryption algorithm, EncMcE, takes the
public-key pk and a plaintext m ∈ {0, 1}l as input and outputs a ciphertext
c = mP⊕ e, where e ∈ {0, 1}n is a random vector of Hamming weight t.

– The deterministic polynomial-time decryption algorithm, DecMcE, works as
follows:
1. Compute cT−1 = (mS)G⊕eT−1, where T−1 denotes the inverse matrix

of T.
2. Compute mS = Correct(cT−1).
3. Output m = (mS)S−1.

In our work we use a slightly modified version of the McEliece PKC. Instead
of creating an error vector by choosing it randomly from the set of vectors with
Hamming weight t, we generate e by choosing each of its bits according to the
Bernoulli distribution Bθ with parameter θ = t

n − ε for some ε > 0. Clearly, due
to the law of large numbers, the resulting error vector should be within the error
capabilities of the code.

2.4 McEliece Assumptions

In this subsection, we briefly introduce and discuss the McEliece assumptions.
We assume that there is no efficient algorithm which can distinguish the

scrambled (according to the description in the previous subsection) generating
matrix of the Goppa code P and a random matrix of the same size. The best
algorithm attacking this assumption is by Courtois et al. [5] and it is based on
the support splitting algorithm [21].

Assumption 4 There is no PPT algorithm which can distinguish the public-key
matrix P of the McEliece cryptosystem from a random matrix of the same size
with non-negligible probability.

We note that this assumption was utilized in [5] to construct a digital signa-
ture scheme.

We also assume that the Syndrome Decoding Problem is hard. This problem
is known to be NP-complete [1], and all currently known algorithms to solve this
problem are exponential. The best algorithms were presented by Canteaut and
Chabaud [4] and recently by Bernstein et al. [2].

Assumption 5 The Syndrome Decoding Problem problem is hard for every
PPT algorithm.



This problem is equivalent to the problem of learning parity with noise
(LPN). Below we give the definition of LPN problem following the description
of [15].

Definition 6. (LPN problem) Let r, a be binary strings of length l. We consider
the Bernoulli distribution Bθ with parameter θ ∈ (0, 1

2 ). Let Qr,θ be the following
distribution:

{(a, 〈r, a〉 ⊕ v)|a � {0, 1}l, v � Bθ}

For an adversary A trying to discover the random r, we define its advantage
as:

AdvLPNθ,A(l) = Pr[AQr,θ = r|r � {0, 1}l]

The LPNθ problem with parameter θ is hard if the advantage of all PPT
adversaries A that makes a polynomial number of oracle queries is negligible.

2.5 Admissible PKE

Below we define admissible PKEs which are known to imply IND-CPA secu-
rity [15]. In the following, Enc(pk,m, r) denotes a public key encryption scheme
enciphering a message m with a public key pk and randomness r.

Definition 7. (Admissible PKE [15]) A public-key encryption scheme PKE =
(Gen,Enc,Dec) with message space M and random space R is called admissible
if there is a pair of deterministic polynomial-time algorithms Enc1 and Enc2

satisfying the following properties:

– Dividability: Enc1 takes as input the public key pk and r ∈ R, and outputs a
p(n) bit-string. Enc2 takes as input the public key pk and m ∈M, and outputs
a p(n) bit-string. Here p is some polynomial in n. Then for any pk generated
by Gen, r ∈ R and m ∈M, Enc1(pk, r)⊕ Enc2(pk,m) = Enc(pk,m, r).

– Pseudorandomness: Consider a probabilistic polynomial time adversary A
against PKE, we associate with it the following experiment ExpindPKE,A(n):

(pk, sk) � Gen(1n)
s0 � Up(n)

r ∈ R
s1 � Enc1(pk, r)
b � {0, 1}
b′ � A(pk, sb)
If b = b′ return 1 else return 0

We define the advantage of A in the experiment as

AdvindPKE,A(n) = |Pr[ExpindPKE,A(n) = 1]− 1
2 |

For all probabilist polynomial time (PPT) adversaries A, the advantage of
A in the experiment must be a negligible function of n.



2.6 Signature Schemes

We explain signature schemes (SS) and define one-time strong unforgeability.

Definition 8. (Signature Scheme). A signature scheme is a triplet of algorithms
(Gen, Sign, Ver) such that:

– Gen is a probabilistic polynomial-time key generation algorithm which takes
as input a security parameter 1n and outputs a verification key vk and a
signing key dsk. The verification key specifies the message space M and the
signature space S.

– Sign is a (possibly) probabilistic polynomial-time signing algorithm which re-
ceives as input a signing key dsk and a message m ∈ M, and outputs a
signature σ ∈ S.

– Ver is a deterministic polynomial-time verification algorithm which takes as
input a verification key vk, a message m ∈ M and a signature σ ∈ S, and
outputs a bit indicating whether σ is a valid signature for m or not (i.e., the
algorithm outputs 1 if it is a valid signature and outputs 0 otherwise).

– For any pair of signing and verification keys generated by Gen and any mes-
sage m ∈ M it holds that Ver(vk,m,Sign(dsk,m)) = 1 with overwhelming
probability over the randomness used by Gen and Sign.

Definition 9. (One-Time Strong Unforgeability). To a two-stage adversary A =
(A1,A2) against SS we associate the following experiment ExpotsuSS,A(n):

(vk, dsk) � Gen(1n)
(m, state) � A1(vk)
σ � Sign(dsk,m)
(m∗, σ∗) � A2(m, σ, state)
If Ver(vk,m∗, σ∗) = 1 and (m∗, σ∗) 6= (m, σ) return 1, else return 0

We say that a signature scheme SS is one-time strongly unforgeable if for all
probabilist polynomial time (PPT) adversaries A = (A1,A2) the probability that
ExpotsuSS,A(n) outputs 1 is a negligible function of n.

3 k-repetition PKE

3.1 Definitions

We define a k-repetition Public-Key Encryption.

Definition 10. (k-repetition Public-Key Encryption). For a PKE (Gen, Enc,
Dec), we define the k-repetition public-key encryption scheme (PKEk) as the
triplet of algorithms (Genk, Enck, Deck) such that:



– Genk is a probabilistic polynomial-time key generation algorithm which takes
as input a security parameter 1n and calls the PKE’s key generation algo-
rithm k times obtaining the public keys (pk1, . . . , pkk) and the secret keys
(sk1, . . . , skk). Genk sets the public key as pk = (pk1, . . . , pkk) and the secret
key as sk = (sk1, . . . , skk).

– Enck is a (possibly) probabilistic polynomial-time encryption algorithm which
receives as input a public key pk = (pk1, . . . , pkk) and a message m ∈ M,
and outputs a ciphertext c = (c1, . . . , ck) = (Enc(pk1,m), . . . ,Enc(pkk,m)).

– Deck is a deterministic polynomial-time decryption algorithm which takes as
input a secret key sk = (sk1, . . . , skk) and a ciphertext c = (c1, . . . , ck). It
outputs a message m if Dec(sk1, c1), . . . ,Dec(skk, ck) are all equal to some
m ∈M. Otherwise, it outputs an error symbol ⊥.

– (Soundness) For any k pairs of public and private keys generated by Genk
and any message m ∈M it holds that Deck(sk,Enck(pk,m)) = m with over-
whelming probability over the randomness used by Genk and Enck.

We also define security properties that the k-repetition Public-Key Encryp-
tion scheme used in the next sections should meet.

Definition 11. (Security under uniform k-repetition of IND-CPA schemes).
We say that PKEk (built from an IND-CPA secure scheme PKE) is secure under
uniform k-repetition if PKEk is IND-CPA secure.

Definition 12. (Verification under uniform k-repetition of IND-CPA schemes).
We say that PKEk is verifiable under uniform k-repetition if given a ciphertext
c ∈ C, the public key pk = (pk1, . . . , pkk) and any ski for i ∈ {1, . . . , k}, it is
possible to verify if c is a valid ciphertext.

3.2 IND-CCA2 Security from CPA Secure k-repetition PKE

In this subsection we describe the IND-CCA2 secure public key encryption
scheme (PKEcca2) and prove its security. We assume the existence of an one-
time strongly unforgeable signature scheme and of a PKEk that is secure and
verifiable under uniform k-repetition.

Key Generation: Gencca2 is a probabilistic polynomial-time key generation
algorithm which takes as input a security parameter 1n. Gencca2 does as
follows:

1. Calls the PKE’s key generation algorithm 2k times obtaining the public
keys (pk0

1, pk1
1, . . . , pk0

k, pk1
k) and the secret keys (sk0

1, sk
1
1, . . . , sk

0
k, sk

1
k).

2. Executes the key generation algorithm of the signature scheme obtaining
a signing key dsk∗ and a verification key vk∗. Denote by vk∗i the i-bit of
vk∗.

3. Sets the public key as pk = (pk0
1, pk1

1, . . . , pk0
k, pk1

k) and the secret key as
sk = (vk∗, sk1−vk∗1

1 , . . . , sk
1−vk∗k
k ).



Encryption: Enccca2 is a (possibly) probabilistic polynomial-time encryption
algorithm which receives as input the public key pk = (pk0

1, pk1
1, . . . , pk0

k, pk1
k)

and a message m ∈M and proceeds as follows:
1. Executes the key generation algorithm of the signature scheme obtaining

a signing key dsk and a verification key vk. Denote by vki the i-bit of vk.
2. Computes ci = Enc(pkvki

i ,m) for i ∈ {1, . . . , k}.
3. Computes the signature σ = Sign(dsk, (c1, . . . , ck)).
4. Outputs the ciphertext c = (c1, . . . , ck, vk, σ).

Decryption: Deccca2 is a deterministic polynomial-time decryption algorithm
which takes as input a secret key sk = (vk∗, sk1−vk∗1

1 , . . . , sk
1−vk∗k
k ) and a ci-

phertext c = (c1, . . . , ck, vk, σ) and proceeds as follows:
1. If vk = vk∗ or Ver(vk, (c1, . . . , ck), σ) = 0, it outputs ⊥ and halts.
2. For some i ∈ {1, . . . , k} such that vki 6= vk∗i , it computes m = Dec(skvki , ci).
3. Verifies if ci = Enc(pkvki

i ,m) for all i ∈ {1, . . . , k}. If the condition is
satisfied, it outputs m. Otherwise, it outputs ⊥.

The probability that Deccca2(sk,Enccca2(pk,m)) 6= m is the same as the prob-
ability that vk = vk∗, but this probability is negligible since the signature scheme
is one-time strongly unforgeable.

As in [19], we can apply a universal one-way hash function to the verification
keys (as in [7]) and use k = nε for a constant 0 < ε < 1. For ease of presentation,
we do not apply this method in our scheme description.

Theorem 1. Given that SS is a one-time strongly unforgeable signature scheme
and that PKEk is secure and verifiable under uniform k-repetition, the public key
encryption scheme PKEcca2 is IND-CCA2 secure.

Proof. In this proof we closely follow [19]. Denote byA the IND-CCA2 adversary.
Let Forge be the event that for some decryption query made by A we have that
Ver(vk, (c1, . . . , ck), σ) = 1 and vk = vk∗. The theorem follow from the two
lemmas below.

Lemma 1. Pr[Forge] is negligible.

Proof. Assume that for a PPT adversaryA against PKEcca2 the forge probability
(Pr[Forge]) is non-negligible, then we construct an adversary A′ that forges a
signature with the same probability. A′ simulates the IND-CCA2 interaction for
A as follows:

Key Generation: A′ invokes the key generation algorithm of the signature
scheme and obtains vk∗. It calls the PKE’s key generation algorithm 2k
times obtaining the public keys (pk0

1, pk1
1, . . . , pk0

k, pk1
k) and the secret keys

(sk0
1, sk

1
1, . . . , sk

0
k, sk

1
k) and uses vk∗ for forming the secret key of PKEcca2. It

sends the public key to A.
Decryption Queries: Whenever A makes a decryption query, A′ proceeds as

follows:



1. If vk = vk∗ and Ver(vk, (c1, . . . , ck), σ) = 1, A′ outputs ((c1, . . . , ck), σ)
as the forgery and halts.

2. Otherwise, A′ decrypts the ciphertext using the procedures of PKEcca2.
Challenging Query: Whenever A makes the challenging query with two mes-

sages m0,m1 ∈M such that |m0| = |m1|, A′ proceeds as follows:
1. Chooses randomly b ∈ {0, 1}.
2. Encrypts the message mb using the procedures of PKEcca2. This is possi-

ble because A′ can ask the signature oracle to sign one message, so it asks
the oracle to sign the value (c1, . . . , ck) obtained during the encryption
process.

As long as the event Forge did not occur, the simulation is perfect, so the
probability that A′ breaks the one-time strongly unforgeable signature scheme
is exactly Pr[Forge]. Since the signature scheme is strongly unforgeable by as-
sumption, Pr[Forge] is negligible for all PPT adversaries against PKEcca2.

Lemma 2. Given that Forge did not occur, the advantage of a PPT adversary
A against PKEcca2,

|Pr[Forge ∧ Expcca2PKEcca2,A(n) = 1]- 1
2 |,

is negligible.

Proof. Assume that for some PPT adversary A against PKEcca2 we have that
|Pr[Expcca2PKEcca2,A(n) = 1∧Forge]- 1

2 | is non-negligible, then we construct an adver-
sary A′ that breaks the IND-CPA security of PKEk. A′ simulates the IND-CCA2
interaction for A as follows:

Key Generation: A′ receives as input the public key (pk1, . . . , pkk) of PKEk.
A′ proceeds as follows:
1. Runs the key generation algorithm of the signature scheme and obtain

the verification key vk∗ and the signing key dsk∗.
2. Sets pk

vk∗i
i = pki for i ∈ {1, . . . , k}.

3. Runs PKE’s key generation algorithm k times obtaining the public keys
(pk

1−vk∗1
1 , . . . , pk

1−vk∗k
k ) and the secret keys (sk1−vk∗1

1 , . . . , sk
1−vk∗k
k ).

4. Sets the public key as pk = (pk0
1, pk1

1, . . . , pk0
k, pk1

k) and the secret key as
sk = (vk∗, sk1−vk∗1

1 , . . . , sk
1−vk∗k
k ).

5. Sends the public key to A.
Decryption Queries: Whenever A makes a decryption query, A′ proceeds as

follows:
1. If Forge occurs, then A′ halts.
2. Otherwise, A′ decrypts the ciphertext using the procedures of PKEcca2.

Challenging Query: When A makes the challenging query with two messages
m0,m1 ∈M such that |m0| = |m1|, A′ proceeds as follows:
1. Sends m0 and m1 toA′ challenging oracle and obtain as response (c∗1, . . . , c

∗
k).

2. Signs (c∗1, . . . , c
∗
k) using dsk∗.



3. Outputs the challenge ciphertext c∗ = (c∗1, . . . , c
∗
k, vk

∗, σ∗).

Output: When A outputs b, A′ also outputs b.

As long as the event Forge does not occur, the advantage of A′ in breaking
the IND-CPA-security of PKEk is the same as the advantage of A in breaking the
IND-CCA2-security of PKEcca2. Since PKEk is IND-CPA-secure by assumption,
we have that PKEcca2 is IND-CCA2-secure.

4 The Randomized McEliece Scheme

In [15] it was proved that the cryptosystem obtained by changing the encryp-
tion algorithm of the McEliece cryptosystem to encrypt r|m (where r is random
padding) instead of just encrypting the message m, the so called Randomized
McEliece Cryptosystem, is IND-CPA secure.

We modify the encryption algorithm of the Randomized McEliece Cryptosys-
tem as follows. Instead of choosing the error vector randomly from the bit strings
of length n and Hamming weight t, we choose each bit of the error vector ac-
cording to the Bernoulli distribution Bθ with parameter θ = t

n − ε for some
ε > 0.

By the law of large numbers, for large enough n the Hamming weight of error
vector e generated by this procedure will be between t − 2nε and t with over-
whelming probability. So this cryptosystem meets the soundness condition. The
IND-CPA security follows from assumptions 4 and 5, since ε can be arbitrarily
small (given that n is large enough).

4.1 Security of the k-repetition Randomized McEliece

We prove that the modified Randomized McEliece is secure and verifiable under
k-repetition, i.e., we prove that the cryptosystem formed by encrypting k times
r|m with different public and private keys (PKEk,McE) is sound, IND-CPA secure
and that it allows the verification of a ciphertext validity given the public keys
and one secret key.

By the soundness of each instance, the probability that in one instance
i ∈ {1, . . . , k} a correctly generated ciphertext is incorrectly decoded is neg-
ligible. Since k is polynomial, it follows by the union bound that the probability
that a correctly generated ciphertext of PKEk,McE is incorrectly decoded is also
negligible. So PKEk,McE meets the soundness requirement.

In order to prove that the cryptosystem PKEk,McE is admissible (and so
IND-CPA secure [15]), we prove that it meets the pseudorandom property (the
dividability follows trivially). Denote by R1, . . . ,Rk random matrices of size
l × n, by P1, . . . ,Pk the public key matrices of the McEliece cryptosystem and
by e1, . . . , ek the error vectors. Define l1 = |r| and l2 = |m|. Let Ri,1 and Ri,2

be the l1 × n and l2 × n sub-matrices of Ri such that RT
i = RT

i,1|RT
i,2. Define

Pi,1 and Pi,2 similarly. We need a lemma from [11]:



Lemma 3. Say there exists an algorithm A making q oracle queries, running
in time t, and such that

|Pr[AQr,θ = 1|r � {0, 1}l1 ]− Pr[AUl1+1 = 1]| ≥ δ

Then there exists an adversary A′ making q′ = O(qδ−2logl1) oracle queries,
running in time t′ = O(tl1δ−2logl1), and such that

AdvLPNθ,A′ ≥ δ
4

Setting q = kn in the lemma, we have that (rR1,1 ⊕ e1)| . . . |(rRk,1 ⊕ ek) is
pseudorandom if the LPNθ is hard.

Now we prove that substituting the random matrices for the public key ma-
trices of the McEliece cryptosystem does not alter the pseudorandomness of the
output (rP1,1 ⊕ e1)| . . . |(rPk,1 ⊕ ek).

Lemma 4. (rP1,1 ⊕ e1)| . . . |(rPk,1 ⊕ ek) is pseudorandom.

Proof. Suppose that some PPT adversary A has non-negligible advantage in
distinguishing (rR1,1 ⊕ e1)| . . . |(rRk,1 ⊕ ek) from (rP1,1 ⊕ e1)| . . . |(rPk,1 ⊕ ek).
Denote them by H0 and Hk respectively. For i ∈ {1, . . . , k − 1}, let Hi be

(rP1,1 ⊕ e1)| . . . |(rPi,1 ⊕ ei)|(rRi+1,1 ⊕ ei+1)| . . . |(rRk,1 ⊕ ek).

Since k is polynomial, by the hybrid argument it is possible to build an
adversary A′ that uses A as a black-box and has a non-negligible advantage
in distinguishing Hi−1 from Hi for some i ∈ {1, . . . , k}, but this would imply
that A′ has a non-negligible advantage in distinguishing the public-key matrix
P of the McEliece cryptosystem from a random matrix of the same size. By
assumption 4, there exists no such A′ and so there cannot exist an adversary A
with non-negligible advantage in distinguishing H0 from Hk.

Theorem 2. PKEk,McE is IND-CPA secure.

Proof. From the lemmas 3 and 4 we have that (rP1,1 ⊕ e1)| . . . |(rPk,1 ⊕ ek) is
pseudorandom. So the cryptosystem is admissible. The IND-CPA security of
the cryptosystem follows from the fact that an admissible cryptosystem is also
IND-CPA secure [15].

Theorem 3. PKEk,McE is verifiable under k-repetition.

Proof. To verify if a ciphertext (c1, . . . , ck) is valid given the public keys and
any secret key of the McEliece cryptosystem (Sj ,Gj ,Tj), we simply decrypt cj
obtaining r|m and for all i ∈ {1, . . . , k} compute c′i = (r|m)Pi and verify if the
hamming distance between c′i and ci is less than or equal to t .

Theorem 4. It is possible to construct an IND-CCA2 secure public key encryp-
tion scheme based on McEliece assumptions.

Proof. Follows directly from theorems 1, 2 and 3.
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