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Abstract. We propose an efficient unconditionally secure protocol for
privacy preserving comparison of `-bit integers when both integers are
shared between two semi-honest parties. Using our comparison protocol
as a building block, we construct two-party generic private machine learn-
ing classifiers. In this scenario, one party holds an input while the other
holds a model and they wish to classify the input according to the model
without revealing their private information to each other. Our construc-
tions are based on the setup assumption that there exists pre-distributed
correlated randomness available to the computing parties, the so-called
commodity-based model. The protocols are storage and computationally
efficient, consisting only of additions and multiplications of integers.

Keywords. Secure Comparison, Private Machine Learning, Uncondi-
tional Security, Commodity Based Model.

1 Introduction

We propose protocols for privacy preserving machine learning classification. Our
protocols are information theoretically secure and work in the commodity-based
cryptographic model [3, 5], where a trusted center pre-distributes correlated ran-
domness to Alice and Bob during a setup phase. The trusted initializer never
knows the players’s inputs, as the pre-distributed data is independent from the
actual inputs to the protocol. Moreover, the trusted initializer never engages in
the protocol execution after the setup phase. Our main technique is to reduce
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the fundamental building blocks used frequently in privacy preserving machine
learning classification (distributed protocols for securely computing comparison,
inner products and argmax) to protocols that can be efficiently computed in the
commodity-based cryptography model. In the case a trusted initializer is not
available or desirable, we sketch how to substitute the TI by a pre-processing
phase where Alice and Bob engage in a protocol for emulating the trusted ini-
tializer behavior; but this comes at the cost of achieving only computational
security.

Private Machine Learning Classification: Supervised machine learning algo-
rithms usually have two phases: training and classification. We focus on the
privacy issues that arise during the classification phase [12, 11, 31]. In the clas-
sification phase, Alice holds an input vector v that represents, for example, her
personal health records. Bob (a health care provider) holds a classifier C and a
model w so that C(w, v) represents, for example, Alice’s estimated health care
related expenses for the current year. For obvious reasons, Alice does not want
to reveal her complete personal health records to Bob, while Bob worries that
knowledge about the model might reveal something about the training dataset
used to obtain w (previously stored personal health records, for example).

Comparison Protocols: One building block often used in classifiers are compari-
son protocols. In a secure comparison protocol, Alice and Bob hold inputs x and
y and would like to know whether y > x while leaking no additional informa-
tion on the inputs. Given an active trusted third party, secure comparisons (or
any other secure computation for that matter) are trivially implementable: Alice
and Bob give the inputs to the trusted third party who, in turn, computes the
desired function of the inputs and announces the result. In cryptography, we are
interested in emulating this ideal protocol without a trusted third party actively
engaging and computing with Alice and Bob. Computing secure comparisons
finds diverse applications, such as solving the classic Millionaires Problem pro-
posed by Yao [48], implementing secure auctions [20], computing the median
[1] and solving minimum spanning tree and a variant of shortest paths [13]. In
this paper, we are interested in applying secure comparisons to perform privacy
preserving machine learning [14, 37, 12, 11] and will present a new protocol that
is efficient and unconditionally secure.

Commodity-based Cryptography: We obtain our results based on the existence
of pre-distributed correlated data to Alice and Bob, the so-called commodity-
based model. This model was introduced by Beaver [3, 5] and is inspired by the
client-server distributed computation model. It is an alternative for obtaining
efficient secure multi-party computation. In this model a trusted initializer (TI)
distributes values (i.e., the commodities) to the parties before the start of the
protocol execution, possibly long before the inputs are known. The values are
correlated and distributed according to a joint probability distribution. The TI
does not perform any subsequent communication with the parties. Since complex
operations can be delegated to the TI (the parties need only to de-randomize the
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pre-distributed computations to match the actual inputs which are not known
to the TI), it is possible to obtain very efficient protocols in this model. In cases
where the presence of a trusted initializer is undesirable (or infeasible), it can
be substituted by a secure two-party computation protocol that generates the
necessary correlated randomness. For example, there are a number of known
approaches [23, 22, 25, 40] for generating multiplicative triples that are used for
performing secure multiplication [4].

1.1 Related Works

Bost et al. [12, 11] proposed protocols for computing C(w, v) privately for the
case of some general classifiers. They used protocols for securely computing com-
parison, inner products and argmax as building blocks. The resulting protocols
are computationally secure and require many modular exponentiations. Graepel
et al. [31] constructed computationally secure privacy preserving procedures for
both training and classification phases from somewhat homomorphic encryption
(SHE). The SHE scheme proposed by the authors incurs in high computational
and communication overheads, requiring expensive operations (e.g. modular ex-
ponentiations) and that ciphertexts grow with the number of multiplications
performed.

Clearly, assumptions are needed in order to perform secure comparisons.
Computationally secure protocols assume, for example, that adversaries are com-
putationally bounded and that some specific cryptographic related computa-
tional problems are intractable. Most of the previously proposed protocols for
secure comparison are computationally secure. Secure comparison protocols in
the plain model (without assuming correlated randomness) have been imple-
mented using Yao’s garbled circuits [34], using encryption of bits as quadratic
and non-quadratic residues modulo an RSA modulus [28], homomorphic encryp-
tion [20, 21, 29, 33], and other adhoc techniques [7, 8]. In all of these protocols
modular exponentiations, public key operations or computations of comparable
complexity are required.

Information-theoretically secure (or unconditionally secure) protocols do not
make any assumptions whatsoever on the computing power of an adversary.
But for obtaining an unconditionally secure comparison protocol it is necessary
to make some assumption, e.g., the existence of a secure multiplication proto-
col, which can be obtained from pre-distributed correlated randomness, or that
the majority of the players are honest. In this setting previous works [19, 38,
43, 10] reduced the task of secure comparison to that of secure multiplication.
For `-bit values that are shared in form of bit-wise secret sharings, it is pos-
sible to use only O(`) instances of the multiplication protocol and it is even
possible to obtain constant round protocols [19, 38, 43].4 Since these protocols

4 Errata: In the conference version of this paper the complexity of these solutions was
unfairly compared to that of our comparison protocol. More specifically, the reported
complexity for the previous solutions was for the case of the full-fledged comparison
protocol which takes the inputs as a single secret shares in Zq and have to perform
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information-theoretically reduce the task of secure comparison to that of secure
multiplication, instantiating them with a suitable secure multiplication proto-
col in the commodity based cryptography model [4] yield unconditionally secure
comparisons.

Many cryptographic protocols were designed in the commodity-based model
for functionalities such as commitments [42, 9, 35], oblivious transfer [3, 2], secure
linear algebra [26, 24], verifiable secret sharing [36, 27], proximity testing [44] and
oblivious polynomial evaluation [45]. For recent and fundamental results on the
power of pre-distributed correlated randomness, see [32]. A solution for efficient
privacy preserving linear regression over distributed datasets in the commodity-
based model was recently proposed by de Cock et al. [18].

1.2 Our Contributions

In this paper we first propose a new two-party unconditionally secure comparison
protocol in the commodity based cryptography model. Our protocol uses only `
invocations of the underlying secure multiplication protocol (which in our case is
implemented using Beaver’s solution for secure multiplication in the commodity-
based model [4]). While our solution uses a linear number of instances of the
multiplication protocol as in previous solutions, our constants are better: the
previous best solution due to Toft [43] uses 13`+6

√
` instances of the underlying

multiplication protocol. The caveats are that our protocol needs dlog(` + 1)e
rounds and the output is not 0/1 represented in Zq, but instead either 0 or
uniformly distributed in Z∗q .

For the typical values of ` used in machine learning classifiers, the dlog(`+1)e
rounds will be very close to the 6 rounds of Toft’s protocol. In our applications,
the only implication of the output not being 0/1 is in the possibilities to build
secure distributed argmax protocols. Considering an argmax protocol for k input
values v1, . . . , vk, if the underlying comparison protocol has 0/1 output there are
two approaches for building the argmax protocol: (1) compare each pair of values
and then multiply the results appropriately to obtain the argmax. This approach
executes k(k − 1) instances of the comparison protocol and k(k − 2) instances
of the multiplication protocol, and has round complexity equal to the round
complexity of the comparison protocol plus dlog(k − 2)e; (2) use a tree-based
approach in which the values are placed in the leaves and then the internal
nodes are computed upwards by using the comparison protocol to keep track
of largest value in its descendants (and the corresponding argument) until one
reaches the root and its associated argument is revealed. This approach executes
k − 1 instances of the comparison protocol and (k − 1)(2` + 2dlog ke) instances
of the multiplication protocol, and has round complexity equal to the round
complexity of the comparison protocol times dlog(k)e. On the other hand, for
comparison protocols with output like ours, one can only use the first approach
for building the argmax protocol. Nevertheless, putting all costs together, using

the bit-decomposition of the inputs; while our protocol already considers the input
as being bit-wise secret sharings.
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our underlying comparison protocol will be the best option for most typical
values of ` and k in our applications. In particular, for typical `, this is the case
if k is small; or, if the round complexity is the main implementation bottleneck,
even for big k. On the remaining cases one can use Toft’s protocol [43] as the
underlying building block.

We then proceed to propose new, efficient and unconditionally secure proto-
cols for private machine learning classification [12, 11] based on our secure com-
parison protocol. Here, we show that, in the commodity-based model, we can
obtain very efficient protocols for two general classifiers: (i) hyperplane decision
and (ii) Näıve Bayes classifiers. Our protocols are computationally very efficient
(requiring solely additions and multiplications of integers) and also very efficient
in terms of the amount of data that has to be pre-distributed. On the other
hand, previous results [12, 11, 31] require computationally expensive operations
(e.g. modular exponentiations) and incur in higher communication overhead.

We also point out that the trusted initializer can be replaced by a secure
two-party computation protocol (though at the cost of unconditional security,
since such protocols require computational assumptions). Most of the correlated
randomness needed in our protocols is used by the underlying multiplicaiton pro-
tocol [4] and consists of multiplicative triples, which can be generated through
known protocols [25, 40]. Notice that the techniques used for computing multi-
plicative triples can also be directly used for computing correlated randomness
required by the vector inner product protocol used in the classifiers [26]. The
remaining correlated data is of the form z ∈ Z∗q , r ∈ Zq, zA = r, zB = z−r, which
can be trivially computed with an additively homomorphic encryption scheme,
e.g. Paillier [39]. We outline the techniques for substituting the trusted initial-
izer in our protocols but leave a full description, security proof and performance
analysis as a future work.

Security Model: Our proposed protocols are secure in the framework of universal
composability (UC) [16] with honest-but-curious corruptions (i.e., the corrupted
parties follow the protocol instructions, but try to learn additional information).

2 Commodity Based Cryptography

In the commodity based cryptography [3, 2] model a trusted initializer (TI) dis-
tributes values (i.e., correlated randomness which are the commodities) to the
parties before the start of the protocol execution, possibly long before the inputs
are known. This pre-distributed data can be obtained in many different settings:
(1) it can pre-distributed by a single trusted center that is active during a setup
phase. Alice and Bob contact the trusted center during a setup phase, receive
their correlated data and no further communication is necessary between Alice
and Bob and the center. Note that the center does not engage in the execu-
tion of the protocol itself nor is aware of Alice and Bob’s input; (2) it can be
pre-distributed by many centers that do not interact with each other. A secure
protocol is possible if a majority of the servers is honest [3, 5]; (3) it can be pre-
computed by players that do communicate through private channels with each
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other and emulate a trusted center by running a general MPC protocol (given
that a majority of them is honest and a broadcast channel is available).

The TI has no access to the parties’ secret inputs and does not communicate
with the parties except for delivering the pre-distributed values during the setup.
One main advantage of this model is the already mentioned high computational
efficiency that arises from the fact that the parties only need to derandomize the
pre-computed instances to match their own inputs. Another advantage is the
fact that since the computations are pre-distributed by a trusted initializer, most
protocols yield perfect security. In this work we model the trusted initializer as an
ideal functionality that generates the correlated randomness that is distributed
to the parties.

Beaver [4] proposed a very efficient protocol for secure distributed (modular)
multiplication in the commodity-based model which will be used as a building
block in this work. The protocol description is omitted due to the lack of space,
see the references for details.

Eliminating the Trusted Initializer In this multiplication protocol, the trusted
initializer can be substituted by a two-party protocol that computes the re-
quired multiplicative triples (t, aA, bA) for A and (aB, bB, I = (aAbB + aBbA − t))
for B. Since generating this specific correlated data finds several applications, it
is a well studied problem. Well known protocols for general purpose multiparty
computation [23, 22] introduced a pre-processing phase protocol where multipli-
cation triples are generated using additively homomorphic encryption schemes
(e.g. Paillier [39]), which can be adapted to the two-party case as described
in [40]. A different approach builds on oblivious transfer to perform the nec-
essary secure multiplications [30]. Recent implementation results [25, 40] show
that both techniques achieve good performance. In particular, [25] shows that
an OT based protocol requires only tens of milliseconds per triple. However, we
remark that using such protocols for computing correlated randomness implies
the loss of unconditional security guarantees, since they are based on computa-
tional assumptions. Comprehensive surveys of different methods for generating
multiplicative triples and their concrete efficiency can be found in [25, 40].

3 Secure Distributed Comparison Protocol

Using the protocol for secure distributed multiplication presented in [4] as a sub-
protocol we build our secure distributed comparison protocol. It implements the
distributed comparison functionality FRDC , which takes the `-bit integers x, y
to be compared in form of shares, reconstruct them from the shares, performs
the comparison and then distributes shares of zero (in the field Zq) if y > x
and shares of an uniformly random w ∈ Z∗q if y ≤ x. More specifically, upon
receiving A’s shares of the inputs, xA, yA, and B’s shares of the inputs, xB, yB,
FRDC proceeds as follows: (1) runs the algorithm R to reconstruct the inputs x
and y from the shares xA, yA, xB, yB; (2) picks a random r ∈ Zq and sends it to
A; (3) if y > x, sends −r mod q to B; (4) if y ≤ x, picks a random w ∈ Z∗q and
sends w − r mod q to B.
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The protocol that implements it follows the lines of Damg̊ard, Geisler and
Krøigaard [20], which is one of the most efficient known solutions for the secure
comparison problem. But due to our usage of pre-distributed, correlated ran-
domness it is possible to eliminate the use of (homomorphic) encryption and the
computation of the XOR of the shared inputs bits, which are both computation-
ally intensive steps.

Let the `-bit integers being compared be x = (x`, . . . , x1) and y = (y`, . . . , y1).
Let q be a prime such that q > 2`+2 (all operations are modulo q). The parties
A and B have additive shares of each bit of x and y. A has xA = (x`A, . . . , x1A)
and yA = (y`A, . . . , y1A) and B has xB = (x`B, . . . , x1B) and yB = (y`B, . . . , y1B)
such that xiA, xiB, yiA, yiB ∈ Zq, xi, yi ∈ {0, 1}, xi = xiA + xiB mod q and
yi = yiA + yiB mod q. We write [yi] to denote the shares of yi, i.e., yiA and yiB
such that yi = yiA +yiB mod q. The distributed comparison protocol uses these
shares and proceeds as follows:

1. The trusted initializer chooses uniformly random z ∈ Z∗q and r ∈ Zq and
distributes the shares zA = r to A and zB = z−r to B. It also pre-distributes
the correlated randomness necessary for the execution of ` instances of the
distributed multiplication protocol.

2. For i = 1, . . . , `, A and B locally compute shares [di] where di = xi− yi, i.e.,
A computes diA = xiA− yiA mod q and B computes diB = xiB− yiB mod q.
Note that di ∈ {0, 1,−1}.

3. For i = 1, . . . , `, A and B locally compute shares [ci] where ci = xi − yi +

1 +
∑`
j=i+1 dj2

`−j+2 (the shares of 1 are fixed a priori, lets say A’s share is
1 and B’s is 0). Let the shares of ci that A has be cA = (c`A, . . . , c1A) and
those of B be cB = (c`B, . . . , c1B).

4. A and B use ` times the distributed multiplication protocol in order to com-
pute shares of w = z

∏`
i=1 ci. Let the final shares be wA and wB, such that

w = (wA + wB) mod q. A outputs wA and Bob outputs wB.

Note that if one of the parties, lets say A, is supposed to learn the result of
the comparison, this can be easily accomplished by having B sending his share
wB to A, who can then reconstruct w and test whether w = 0 mod q and so
y > x or w 6= 0 mod q and so y ≤ x.

Theorem 1 Let q be a prime such that q > 2`+2 and let R be the recovering
algorithm that takes the additives shares modulo q of each bit xi of x and yi
of y and returns x and y. The distributed comparison protocol is correct and
securely implements the distributed comparison functionality FRDC against honest
but curious adversaries in the commodity based model.

Proof. Correctness: We have that y > x if and only if there exists i such that all
the bits (x`, . . . , xi+1) are identical to the bits (y`, . . . , yi+1) and xi− yi + 1 = 0.
Equivalently, y > x if and only if there exists i such that all d` = . . . = di+1 = 0
and di + 1 = 0. We first prove the following useful lemmas.

Lemma 2 Let Si =
∑`
j=i+1 dj2

`−j+2, where dj ∈ {0, 1,−1}. If d` = . . . =
di+1 = 0, then Si = 0; otherwise Si /∈ {−3,−2,−1, 0, 1, 2, 3} modulo q.
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Proof. If all d` = . . . = di+1 = 0 then it follows trivially that Si = 0. Now we
show that if Si ∈ {−3,−2,−1, 0, 1, 2, 3} modulo q then all d` = . . . = di+1 = 0.
Suppose that there are some dj which are not 0 and let k ∈ {i + 1, . . . , `} be
smallest value such that dk ∈ {1,−1}. Since the operations are modulo q > 2`+2,

the sum of the powers
∑`
j=k+1 2`−j+2 ≤ 2`−k+2−4 and the power of 2 associated

with dk is 2`−k+2 ≤ 2`+1, it follows that Si /∈ {−3,−2,−1, 0, 1, 2, 3} modulo q if
dk is non-zero. Therefore all d` = . . . = di+1 = 0 if Si ∈ {−3,−2,−1, 0, 1, 2, 3}
modulo q.

Lemma 3 For any i ∈ {1, . . . , `}, ci = 0 if and only if d` = . . . = di+1 = 0 and
di + 1 = 0.

Proof. It is trivial that if d` = . . . = di+1 = 0 and di + 1 = 0, then ci = 0, so lets
prove the other direction. Since di ∈ {0, 1,−1}, it implies that di + 1 ∈ {0, 1, 2}.
But by Lemma 2, Si =

∑`
j=i+1 dj2

`−j+2 is such that Si ∈ {−3,−2,−1, 0, 1, 2, 3}
modulo q only if d` = . . . = di+1 = 0, which imply that ci = di + 1 + Si will be
different from zero if di + 1 6= 0 or any d`, . . . , di+1 is different from 0.

Hence we have that y > x if and only if there exists i such that ci = 0. Since
z is uniformly random in Z∗q and w = z

∏`
i=1 ci mod q, we have that w = 0 if

and only if there exists i such that ci = 0; otherwise it is uniformly distributed
in Z∗q . And thus the correctness of the protocol is proved.

Security: Note that the first and second steps of the protocol do not require
message exchanging (the shares of the constant 1 in the second step can be
fixed a priori). So the only messages exchanged are those for the execution of
the distributed multiplication protocol and therefore the real protocol transcript
can be perfectly simulated as explained in [4].

Note that even if one of the parties, lets say A, is supposed to learn the result
of the comparison and so B sends wB to A as a last step, this does not affect the
security of the protocol since this last message can also be perfectly simulated
by a simulator that only learns A’s inputs and outputs. This is due to the fact
that either y > x and so some ci = 0, w = 0 mod q and wB = −wA mod q
or y ≤ x and so all ci 6= 0 mod q and w is uniformly random in Z∗q since z is
uniformly distributed in Z∗q .

4 argmin and argmax

Suppose that the parties A and B have shares of a tuple of values (v1, . . . , vk)
and they want to learn the value m ∈ {1, . . . , k} such that vm ≤ vi for all
i ∈ {1, . . . , k}, but no party should learn any vi or the relative order between
the elements. I.e., the parties just want to learn m = argmini∈{1,...,k} vi. Using
our protocol for secure distributed comparison it is possible to give a practical,
secure solution for this problem. The main idea is that for such m we have
that vm ≤ vi for all other vi. Hence if we compare vm with each vi using our
distributed comparison protocol with vm playing the role of y and vi in the
role of x, then all the output values that are shared between A and B will be
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uniformly random in Z∗q , so the product of them all is also uniformly random in
Z∗q . On the other hand, for any j, if there is some i such that vj > vi, then the
result of comparing vj playing the role of y with vi in the role of x will be 0, and
so the product of the outputs is also 0.

The argmin functionality FRargmin is parametrized by the size q of the field in
which the operations are done, the bit-length ` of the values being compared and
the algorithm R that reconstructs the inputs from the shares. Upon receiving
A’s inputs shares, (v1A, . . . , vkA), and B’s inputs shares, (v1B, . . . , vkB), FRargmin

proceeds as follows: (1) runs R to reconstruct the inputs (v1, . . . , vk) from the
shares; (2) computes m = argmini∈{1,...,k} vi; (3) sends m to A.

The argmin protocol works as follows. Let ` be the bit length of the values
vi and let q be a prime such that q > 2`+2. All operations are modulo q. The
trusted initializer pre-distributes all the correlated randomness necessary for the
execution of the instances of the distributed multiplication protocol and of the
distributed comparison protocol (with the same field size q). A has shares of
the inputs (v1A, . . . , vkA) and B also has shares of the inputs (v1B, . . . , vkB). For
j = 1, . . . , k, the protocol then proceeds as follows:

1. For all i ∈ {1, . . . , k}\j, A and B execute the distributed comparison protocol
with inputs vj in the role of y and vi in the role of x. Let wi denote the shared
output obtained by A and B.

2. A and B use k − 2 times the distributed multiplication protocol in order to
compute shares of w =

∏
i∈{1,...,k}\j wi. Let the final shares be wA and wB.

B sends his share wB to A.
3. A recovers w = (wA + wB) mod q. If w 6= 0 mod q, append j to the value

to be output by A in the end.

Theorem 4 Let q be a prime such that q > 2`+2 and let R be the recovering
algorithm that takes the additives shares modulo q of each bit of vi and returns vi.
The argmin protocol is correct and securely implements the argmin functionality
FRargmin against honest but curious adversaries in the commodity based model.

Proof. Correctness: Let m be a value such that vm ≤ vi for all i ∈ {1, . . . , k} \
m. Each comparison of vm playing the role of y and vi (i ∈ {1, . . . , k} \m) in
the role of x will result in a shared output value wi which is uniformly random
in Z∗q , and so w =

∏
i∈{1,...,k}\j wi is also uniformly random in Z∗q and m is

appended to A’s output. On the other hand, for any j such that there is some
i with vj > vi, the result of comparing vj playing the role of y with vi in the
role of x will be 0, and so the product of the outputs is also 0 and and j is not
appended to A’s output.

Security: As explained in the previous sections the messages involved in
the distributed comparison and the distributed multiplication protocols can be
straightforwardly and perfectly simulated by the simulator. The share sent in
the third step only reveal 1 bit of information, either w = 0 if the value is not
the argmin or w is completely random in Z∗q if the value is the argmin. This can
be trivially simulated given the output of the argmin functionality.



10 Authors Suppressed Due to Excessive Length

The complementary problem is to compute the value m = argmaxi∈{1,...,k} vi.
From the secure argmin protocol it is trivial to obtain a secure argmax protocol
by simply running the argmin protocol with inputs (2`− 1− v1, . . . , 2

`− 1− vk).

5 Applications

Practical secure protocols for distributively computing the comparison have
many applications such as: auctions, private machine learning classifiers, bench-
marking and secure extraction of statistical data from databases. In this section,
we show that our previously proposed protocol for comparison can be used di-
rectly to obtain secure auctions and that our protocol for secure computing the
argmax function can be used to obtain private machine learning classifiers.

5.1 Auctions

As already mentioned by Damg̊ard et al. [20] a secure comparison protocol can
be used to execute an auction protocol in which no party learns the value of the
highest bid until the auction is finished. Lets say that A is the auction house and
B is the accounting company. A and B hold shares of the biggest bid x done so
far, xA and xB respectively. Now if a new participant wants to bid y, he creates
shares yA and yB of his bid and send them to A and B respectively. Then A and B
can compare the bids without discovering their values. This is particularly useful
in the scenario of online auctions where the participants can submit a maximum
bid to the system, which will them automatically bid for the participant until
it wins the bid with the minimum possible bid or its maximum bid is achieved.
Notice that the knowledge of the maximum bid in such case should be kept
confidential from the other participants and from the auction house since they
could otherwise exploit such knowledge. Using the secure comparison protocol
A and B can keep track of both the highest bid so far, x, and the maximum bid
y that was still not achieved (there is either none or one such value) without
either A or B learning x or y. Then when a new bid z arrives, they can securely
compare z to y and to x in order to update the values of the highest bid and of
the maximum bid not yet achieved.

5.2 Private Machine Learning

In machine learning the supervised learning algorithms should given an input
v output a guess of what class c ∈ {1, . . . , k} it belongs to. They are divided
in two phases: the training and the classification. In the training phase, given
labeled samples (i.e., inputs and the corresponding classes) the algorithm learns
a model w. Then in the classification phase, the algorithm takes the model w
and an input v and should output the guess c of which class v belongs to. Here
we focus on obtaining privacy-preserving classifiers.

Imagine for instance the scenario where a health care provider has a model
w to predict the occurrence of certain diseases which was built using the medical
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profile of several persons and a patient wants to obtain the prediction C(w, v) of
what diseases he is likely to have given his medical profile v. On one hand, the
model w can leak sensitive information about the medical profile of the patients
whose medical profiles were used as labeled samples, and therefore should be kept
confidential (this can even be required by law depending on the jurisdiction).
On the other hand, the patient does not want do reveal his sensitive medical
profile v. Hence the patient and the health care provider should ideally be able
to interact in a protocol in which the patient learns C(w, v) in the end, but
nothing else; while the health care provider does not learn anything.

As pointed out by Bost et al. [11], the core building blocks for designing
many private classifiers are secure comparison, argmax and inner product pro-
tocols. In this paper we developed practical, unconditionally secure solutions for
computing the comparison and the argmax with a trusted initializer. A practi-
cal and unconditionally secure inner product protocol with a trusted initializer
was already presented by Dowsley et al. [26], so combining these protocols (and
making the necessary conversions to the bit-wise shares) we are able to obtain
practical private classifiers. One example of a classifier which is used in many
learning algorithms is the hyperplane decision classifier. In this classifier the
model w consists of k vectors w1, . . . , wk and the classification of the input v is
done by computing

C(w, v) = arg max
i∈{1,...,k}

〈v, wi〉.

This can be straightforwardly implemented using the inner product protocol
from Dowsley et al. [26] (which shares the result between the parties), a conver-
sion to bit-wise shares (techniques from [47] or [43] can be used) and our argmax
protocol. Another classifier that can be implemented in a privacy-preserving
way using these building blocks is the Näıve Bayes classifier. In this classifier the
model consists of the probability that each class ci, {p(C = ci)}ki=1, happens and
the probability that each element vj of the input v happens in a certain class ci.
The classification using a maximum a posteriori decision rule is computed as

C(w, v) = arg max
i∈{1,...,k}

log p(C = ci) +
∑
j

log p(Vj = vj |C = ci)

 .

Note that our protocols work with integers, so we first need to convert the log
of the probabilities to integers by multiplying by a large number T . For details
about this issue please refer to [46, 11]. The converted value of log p(C = ci)
can be shared by the model owner. To produce shares of log p(Vj = vj |C = ci)
without revealing vj to the model owner, the parties, for each possible value
vk in the domain of Vj , compute a distributed multiplication of the converted
value of log p(Vj = vk|C = ci) (with the shares distributed by the model owner)
and either 0 if vk 6= vj or 1 if vk = vj (the shares of this second number to
be multiplied are distributed by the user). The shared results of these mul-
tiplications are then added to produce the shares of the converted value of
log p(Vj = vj |C = ci) = 1 log p(Vj = vj |C = ci) +

∑
k 6=j 0p(Vj = vk|C = ci)
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without revealing vj . From there the remaining additions can be done locally by
the parties and then the argmax protocol is used to generate the output.

Eliminating the Trusted Initializer In order to substitute the trusted initializer
in our private classifiers, we need to construct secure two party protocols that
generate the correlated randomness for both the vector inner product protocol
[26] and the comparison protocol of Section 3. As we have pointed out in Sec-
tion 2, there exist a number of highly efficient methods [25, 40] for generating
the correlated data used by the underlying multiplication protocol [4]. The same
techniques can be applied in a straightforward way to generate the correlated
randomness used in the vector inner product protocol [26].

The only remaining data that must be generated is z ∈ Z∗q , r ∈ Zq, zA =
r, zB = z − r, which is used by the comparison protocol. These values can be
trivially computed using an additively homomorphic cryptosystem such as the
one by Paillier [39]. Let such cryptosystem be described by the following algo-
rithms: Key Generation Gen(1λ) → (sk, pk), Encryption Enc(pk,m) → c and
Decryption Dec(sk, c)→ m, with m1+m2 = Dec(sk, c1·c2) for c1 = Enc(pk,m1)
and c2 = Enc(pk,m2). To generate zA, zB, B runs Gen(1λ)→ (sk, pk), uniformly
samples z1 ∈ Z∗q and sends (pk, ẑ1 = Enc(pk, z1)) to A. A uniformly samples
z2 ∈ Z∗q , r ∈ Zq, computes ẑ2 = Enc(pk, z2), r̂ = Enc(pk, r), ẑ = ẑ1 · ẑ2, sends
ẑB = ẑ · r̂−1 to B and sets zA = r. B decrypts ẑB and sets zB = Dec(sk, ẑB). This
protocol’s security follows from the IND-CPA security of Paillier’s cryptosystem.

Notice that the efficiency of both the multiplication protocol of [4] and the
protocols introduced in this paper is independent from the efficiency of the
trusted initializer, since the correlated randomness provided by it can be precom-
puted independently from our protocol execution. In fact, the trusted initializer
(or a substitute two-party protocol) can compute the necessary correlated ran-
domness at any given time before the actual protocol inputs are known. Hence,
a large amount of correlated randomness can be pre-computed and stored for
future protocol executions.

As we remarked before, such two-party protocols for generating correlated
randomness require computational assumptions. In fact, it is well known that
any two-party protocol that computes multiplications cannot achieve uncondi-
tional security in the plain model (i.e. without setup assumptions) [6, 17, 41].
Hence, substituting the trusted initializer implies the loss of unconditional se-
curity guarantees. We leave a full description, security proof and performance
analysis of protocols for substituting the trusted initializer as a future work.

6 Conclusion

In this paper we proposed an unconditionally secure protocol for secure com-
parison of integers. We also proposed protocols for computing the argmin and
argmax functions and show how they can be used to obtain generic private
machine learning algorithms, namely the hyperplane based and Näıve Bayes
classifiers. We proved that our protocols are secure against honest-but-curious
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adversaries. Our protocols are very efficient from a storage and computational
point of view. In many real-world scenarios it does make sense to assume the ex-
istence of trusted initializers. Therefore, we see commodity-based cryptography
as a realistic model for obtaining efficient secure computation protocols. On the
other hand, we also outline alternatives to the trusted initializer for situations
where its existence might be considered an issue.
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