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Abstract. In [2] a public key encryption scheme was proposed against
adversaries with a bounded number of decryption queries based on the
decisional Diffie-Helman Problems. In this paper, we show that the same
result can be easily obtained based on weaker computational assumption,
namely: the computational Diffie-Helman assumption.
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1 Introduction

The highest level of security known to public key cryptosystems is indistin-
guishability against adaptive chosen ciphertext attack (IND-CCA2), proposed
by Rackoff and Simon [11] in 1991.

Currently there are a few paradigms for the elaboration of IND-CCA2 PKE
schemes. The first paradigm was proposed by Dwork, Dolev and Naor [5], and is
an enhancement of an construction proposed by Naor and Yung [10] (which only
achieved the non-adptive IND-CCA). This scheme is based on non-interactive
zero knowledge techniques. Cramer and Shoup [3] proposed the first practical
IND-CCA2 scheme without the use of random oracles. They also introduced
hash-proof systems, which is an important element used in their construction.

Recently, a new paradigm was introduced for obtaining IND-CCA2 PKE
schemes: bounded CCA2 security [2]. In [2] it was proved that there exists a
mapping converting chosen plaintext attack (CPA) secure PKE into another
one secure under adaptive chosen ciphertext attacks for a bounded number of
access to the decryption oracle. This weaker version of IND-CCA2 is technically
termed IND-q-CCA2, where the polynomial q denotes the number of the adver-
sary’s queries to the decryption oracle. Additionally, the polynomial q is fixed
in advance, in the key-generation phase. Moreover, in [2], the authors proved



that in this new setting it is possible to obtain a PKE based on the Decisional
Diffie-Hellman Problem with optimal ciphertext length.

1.1 Our Contribution

We improve upon the results presented [2]. Namely, we show that it is possible to
obtain a IND-q-CCA2 PKE scheme with optimal ciphertext length (one group
element) based on the Computational Diffie-Hellman (CDH) assumption.

We also note that [1], [7] and [8] obtain CCA secure PKE based on the
CDH assumption without any kind of assumption on the number of queries an
adversary performs to decryption oracle. However, these schemes present larger
ciphertext length when compared to ours.

2 Preliminaries

In this section we present some definitions which were used in the construc-
tion of our scheme. We refer the reader to [3], [2], [9] and [1] for more detailed
explanations of these definitions.

Throughout this paper it will be used the subsequent notations. If X is a set

then x
$←− X denotes the experiment of choosing an element of X according to

the uniform distribution. If A is an algorithm, x ← A denotes that the output
of A is x. We write w ← AO(x, y, ...) to indicate an algorithm A with inputs
x, y, . . . and black-box access to an oracle O. We denote by Pr[E] the probability
that the event E occurs.

2.1 Public Key Encryption

A Public Key Encryption Scheme (PKE) is defined as follows:

Definition 1. A public-key encryption scheme is a triplet of algorithms (Gen,
Enc, Dec) such that:

– Gen is a probabilistic polynomial-time (p.p.t) key generation algorithm which
takes as input a security parameter 1k and outputs a public key pk and a se-
cret key sk. The public key specifies the message spaceM and the ciphertext
space C.

– Enc is a p.p.t. encryption algorithm which receives as input a public key pk
and a message M ∈ M, and outputs a ciphertext C ∈ C.

– Dec is a deterministic polynomial-time decryption algorithm which takes as
input a secret key sk and a ciphertext C, and outputs either a message M ∈
M or an error symbol ⊥.

– (Soundness) For any pair of public and private keys generated by Gen and
any message M ∈ M it holds that Dec(sk,Enc(pk,M))=M with overwhelming
probability over the randomness used by Gen and Enc.

Next, we define the notion of IND-q-CCA2 security.



Definition 2. (IND-q-CCA2 security) For a function q(k) : N → N and a two
stage adversary A = (A1, A2), against PKE we associate the following experi-

ment Expind−q−cca2A,PKE (k):

(pk,sk)
$←− Gen(1k)

(M0,M1, state)←ADec(sk,.)
1 (pk) s.t.|M0| = |M1|

β
$←− {0, 1}

C∗ ← Enc(pk,Mβ)

β′ ← ADec(sk,.)
2 (C∗, state, pk)

If β = β′ return 1 else return 0

The adversary A is allowed to ask at most q(k) queries to the decryption
oracle Dec in each run of the experiment. None of the queries of A2 may con-
tain C∗. We define the advantage of A in the experiment as Advind−q−cca2A,PKE (k)=

|Pr[Expind−q−cca2A,PKE (k) = 1] − 1
2 |. We say that PKE is indistinguishable against

q-bounded adaptive chosen-ciphertext attack (IND-q-CCA2) if for all p.p.t. ad-
versaries A = (A1,A2) that makes a polynomial number of oracle queries the
advantage of A in the experiment is a negligible function of k.

2.2 Number Theoretic Assumptions

In this section we state a Diffie-Hellman intractability assumption: Computa-
tional Diffie-Helman.

Definition 3. (CDH assumption) Let G be a group of order p and generator
g. For all p.p.t. adversaries A, we define its CDH advantage against G at a

security paramerer k as AdvcdhA,G(k)=Pr[c=gxy :x, y
$←−Zp; c← A(1k, gx, gy)].

We say that the CDH assumption holds for G if for every polynomial-time ad-
versary A the function AdvcdhA,G is negligible in k. Throughout this paper we will

denote εcdh=AdvcdhA,G(k).

2.3 Goldreich-Levin Hard-Core Function

Let G be a group of order p and generator g, and x, y ∈ Zp. We denote by h:
G× {0, 1}u → {0, 1}v the Goldreich-Levin hard-core function [6] for gxy (given
gx and gy), with randomness space {0, 1}u and range {0, 1}v, where u, v ∈ Z.

The following theorem is from [1, Theorem 9].

Theorem 1. Suppose that A is a p.p.t. algorithm such that A(gx, gy, r, k) dis-
tinguishes k= h(gxy, r) from a uniform string s ∈ {0, 1}v with non-negligible
advantage, for random x, y ∈ Zp and random r ∈ {0, 1}u. Then there exists a
p.p.t. algorithm B that computes gxy with non-negligible probability given gx and
gy, for random x, y ∈ Zp.



2.4 Target Collision Resistant Hash Functions

Let G be a group, and k the security parameter. We denote by TCR: {0, 1}` →
{0, 1}n the Target collision resistant hash function. Consider the following ex-
periment, where A is an adversarial algorithm.

ExptcrA,π(k) : [x
$←− {0, 1}`;x′ ← A(k, x), x 6= x′; return 1 if TCR(x′) = TCR(x),

else return 0]. We define εtcr = Pr[ExptcrA,π(k) = 1].

Definition 4. (Target Collision Resistant Hash Function) A polynomial-time
algorithm TCR:{0, 1}` → {0, 1}n is said to be a target collision resistant hash
function if for every p.p.t. A it holds that εtcr is negligible.

2.5 Strong Pseudo-Random Permutation

Let π: {0, 1}k × {0, 1}∗ → {0, 1}∗ be a family of permutations, and πk: {0, 1}∗ →
{0, 1}∗ be an instance of π, which is indexed by k ∈ {0, 1}k. Let P be the set of
all permutations for bit strings of size *, and A be an adversary. Then, consider

the following experiments: ExpsprpA,π (k) : [k
$←− {0, 1}k;β ← AπK ,π

−1
k ;return β]

and ExpidealA,π (k) : [perm
$←−P;β←Aperm,perm−1

; return β], where permutations

πK , π
−1
k , perm, perm−1 are given to A as black boxes, and A can observe only

their outputs which correspond to A’s inputs.
We define εsprp= 1

2 |Pr [ Exp
sprp
A,π (k) = 1]− Pr[ Exp

ideal
A,π (k) = 1]|.

Definition 5. (Strong Pseudorandom Permutation - SPRP) A polynomial-time
algorithm πk: {0, 1}∗ → {0, 1}∗ is said to be a strong pseudorandom permutation
if for every p.p.t. A it holds that εsprp is negligible.

2.6 Cover Free Families

Let S be a set, and F a set of subsets of S. Let d, s, q be positive integers, where
|S| = d and |F| = s. We say F is a q-cover-free family, if for any q subsets
of S, F1, . . . ,Fq ∈ F , and any other subset of S, Fi /∈ {F1, . . . ,Fq}, we have⋃q
j=1 Fj + Fi. Additionally, we say the family F is `-uniform if the cardinality

of every element in the family is `.
Furthermore, we point out the existence of a deterministic polynomial time

algorithm that on input s, q returns `, d, F . The set F , which has cardinality s,
is a `-uniform q-cover-free family over {1, . . . , d}, for ` = d

4q and d ≤ 16q2 log s.

The cover-free family used in our construction has the following parameters (for
a security parameter k): s(k) = 2k, d(k) = 16kq2(k), `(k) = 4kq(k).

2.7 Hybrid Encryption

Our model make use of a method of hybrid encryption [4]. Such schemes uses
public-key encryption techniques to encrypt a random key K. The encrypted
key K is then used to encrypt a actual message using a symmetric encryption
scheme.



Definition 6. A key encapsulation mechanism is a triplet of algorithms (KGen,
KEnc, KDec) such that:

– KGen is a probabilistic polynomial-time (p.p.t) key generation algorithm
which takes as input a security parameter 1k and outputs a public key pk and
a secret key sk. The public key specifies the key space K and the symmetric
key space K.

– KEnc is a (possibly) p.p.t. encryption algorithm which receives as input a
public key pk, and outputs (K ,K), where K ∈ K is a key, and K ∈ K is a
encapsulated symmetric key.

– KDec is a deterministic polynomial-time decryption algorithm which takes
as input a secret key sk and a key K, and outputs a encapsulated symmetric
key K ∈ K or an error symbol ⊥.

– (Soundness) For any pair of public and private keys generated by KGen
and any pair (K ,K) generated by KEnc it holds that KDec(sk,K)=K with
overwhelming probability over the randomness used by KGen and KEnc.

Definition 7. (Key Encapsulation Mechanism Adaptive Chosen Ciphertext Se-
curity) To a two stage adversary A = (A1, A2), against KEM we associate the
following experiment ExpkemA,PKE(k):

(pk, sk)
$←− KGen(1k)

state ← AKDec(sk,.)
1 (pk)

(K∗,K
∗
) ← KEnc(pk)

β
$←− {0, 1}

If β = 0, K
� ← K

∗
, else K

� $←− K
β′ ← AKDec(sk,·)

2 (K∗,K
�
, state, pk)

If β′ = β return 1, else return 0.
The adversary A2 is not allowed to query KDec(sk,.) with K

�
. We define the

advantage ofA in the experiment as AdvkemA,PKE(k) = |Pr[ExpkemA,PKE(k) = 1]− 1
2 |.

We say a KEM used in a PKE is indistinguishable against adaptive chosen-
ciphertext attack (IND-CCA2) if for all p.p.t. adversaries A = (A1,A2) the
advantage of A in the experiment is a negligible function of k. Throughout this
paper, we will denote AdvkemA,PKE(k) as εkem.

3 IND-q-CCA2 Encryption From CDH

Our construction yields a IND-q-CCA PKE scheme based on CDH assumption
with optimal ciphertext length. To achieve a scheme with such features, we make
use of hybrid encryption techniques.The symmetric-key encryption scheme is
constructed based on strong pseudorandom permutations, as in [2], to obtain
redundancy-free property and security against chosen-ciphertext attacks.

We assume the existence of a cyclic group G of prime-order p where the
CDH assumption is believed to hold, i.e., given (g, gx, gy) there is no efficient
way to calculate gxy, for random g ∈ G, and random x, y ∈ Zp. Let TCR:



{0, 1}` → {0, 1}n be a target collision resistant hash function , π : {0, 1}k ×
{0, 1}v → {0, 1}v be a permutation family where the index space is {0, 1}k, and
h: G× {0, 1}u → {0, 1}v be a hard-core function family.Our scheme from CDH
assumption consists of the following algorithms:

Gen(1k): Define s(k) = 2k, d(k) = 16kq2(k), `(k) = 4kq(k). Run KGen.

For i = 1, . . . , d(k) and m = 1, . . . , k , computes Xmi = gxmi for xmi
$←−

Zp. Choose a
$←− {0, 1}u. Outputs pkm = (Xm1, . . . , Xmd(k)) and skm =

(xm1, . . . , xmd(k)). The public key is pk = {pk1, . . . , pkk, a}, and the secret
key is sk = {sk1, . . . , skk}.
Enc(pk, M): RunKEnc. KEnc computes r = gb for b

$←− Zp j = TCR(r) where
Fj = {j1, . . . , j`(k)} is the q-CFF subset associated to value j(which will
define the set of the session’s public/private keys). Sets K= r and calculates
Km = (h(Xb

mj1
, a)⊕. . .⊕h(Xb

mj`(k)
, a)) for m = 1, . . . , k , where ⊕ is the XOR

bitwise. Define K = K1||K2|| . . . ||Kk. To encrypt message M, run symmetric-
key encryption to obtain the ciphertext ψ ← πK(M). Output C=(K, ψ).
Dec(sk, C): Run KDec. KDec computes j = TCR(K) to obtain the sub-
set Fj , and compute Km = (h(Kxmj1 , a) ⊕ . . . ⊕ h(K

xmj`(k) , a)). Set K =
K1||K2|| . . . ||Kk. Decrypt ψ to M ← π−1

K
(ψ).

Theorem 1 The above scheme is IND-q-CCA2 if the CDH assumption holds,
TCR is a target collision resistant hash function, h is a hardcore function, and
π is strongly pseudorandom.

We follow the same approach of [2] to prove the above theorem via a game-
based proof. We prove that the KEM is IND-q-CCA2 secure and then use the
KEM/DEM composition theorem from [4]. Let Game 0 be the KEM-IND-q-

CCA game with adversary A where K∗ = r∗ = gy for y
$←− Zp and A’s output of

the game, β, is a random bit. Let X0 denotes that β = β′. For later games, let Xi

(i > 0) be defined analogously. We have: 1
2AdvKEM-IND-q-CCA

PKE,A (k) = |Pr[X0]− 1
2 |.

Game 1 is identical to Game 0, except that the key K∗ is initially chosen,
and all decapsulation queries with TCR(K) = TCR(K∗) are rejected. By reduc-

tion on the security of the TCR, one can show that |Pr[X1]−Pr[X0]| ≤ εtcr+ q(k)
p ,

for a suitable adversary V, where εtcr is the probability that V finds TCR(K) =

TCR(K∗) for K 6= K∗ and q(k)
p is an upper bound on the probability that A1 ask

the decryption oracle to decrypt K∗.
Game 2 is equivalent to Game 1. In this game, we will defineQ :=

⋃
Ki 6=K∗ Fji ,

where Ki is the i-th decapsulation request of A, ji = TCR(Ki) and Fji are the
sets of PKE key pairs associated with the respective i-th query. Define t :=
min(Fj∗\Q), for j∗ = TCR(K∗) (it is always possible since Fj∗ * Q). Addition-
ally we choose uniformly and independently α ∈ Fj∗ . Call ABORT the event
that α 6= t . Note that Pr[ABORT|X2] = `−1

` = Pr[ABORT], so the events X2

and ABORT are independent, and in particular, Pr[X2] = Pr[X1].
In Game 3, we substituteA′s output β′ with a random bit whenever ABORT

occurs. Obviously, Pr[X3|¬ABORT]=Pr[X2|¬ABORT] and Pr[X3|ABORT] =



1
2 . Since Pr[ABORT] = (` − 1)/` in Game 3 as well, we can establish that

Pr[X3] − 1
2 =

Pr[X2]− 1
2

` . In Game 4, we immediately stop the experiment and
set ABORT to true as soon as A asks for a decapsulation where K 6= K∗ and
α ∈ Fj (j = TCR(K)). Consequently, Pr[X4]=Pr[X3].

In the following games, we demonstrate, by a standard hybrid argument, that
any p.p.t. adversary has a negligible advantage in distinguishing a real key from
a random string of same size.

In Game 5, the challenge key is formed as: K = K1||K2|| . . . ||Kk. Since it
consists in a well formed key, Pr[X5]=Pr[X4].

In Game 6, the challenge key will be constructed in the following way: K =
K1||K2|| . . . ||Kk−1||rnd1, where rnd1 is a random element from {0, 1}v. The last
component Kk in Game 5 is formed as Kk = h(Xy

kj1
, a)⊕. . .⊕h((gxkα)y, a)⊕. . .⊕

h(Xy
kj`
, a). We can see that distinguishing Kk from a random element of {0, 1}v

implies in distinguishing h((gxkα)y, a) from a random element of {0, 1}v. From
Theorem 2.5, an adversary that distinguishes h((gxkα)y, a) from a random
element of {0, 1}v, solves the CDH problem. Therefore, if the CDH assumption
holds, Pr[X6] - Pr[X5] ≤ ε′′, where ε′′ is negligible.

In Game 5+n, for 2 ≤ n ≤ k, the challenge key is formed as the following: K
= K1||K2|| . . . ||Kk−n||rndn, where rndn is a random element from {0, 1}nv. From
Theorem 2.5, Pr[X5+n] - Pr[X5+n−1] ≤ ε′′, where ε′′ is negligible. In particular,
Pr[X5+k] = 1

2 , since in Game 5+k the key is completely random. Collecting the

probabilities we have that:AdvKEM-IND-q-CCA
PKE,A (k) ≤ 2 · εtcr + `(k) · k · ε′′+ 2q(k)

p .
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