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Åbogade 34, 8200 Aarhus N, Denmark

bernardo@cs.au.dk
2 Institute of Theoretical Informatics, Karlsruhe Institute of Technology

Am Fasanengarten 5, Geb. 50.34, 76131 Karlsruhe, Germany
rafael.dowsley@kit.edu

3 Department of Computer Science, Federal University of Minas Gerais
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Campus Darcy Ribeiro, 70910-900, Braśılia - DF, Brazil
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Abstract

Linear algebra operations on private distributed data are frequently required in several
practical scenarios (e.g. statistical analysis and privacy preserving databases). We present
universally composable two-party protocols to compute inner products, determinants, eigen-
values and eigenvectors. These protocols are built for a two-party scenario where the inputs
are provided by mutually distrustful parties. After execution, the protocols yield the results
of the intended operation while preserving the privacy of their inputs. Universal compos-
ability is obtained in the trusted initializer model, ensuring information theoretical security
under arbitrary protocol composition in complex environments. Furthermore, our proto-
cols are computationally efficient since they only require field multiplication and addition
operations.

Keywords: UC security, Trusted Initializer Model, Linear Algebra.



1 Introduction

Secure computation is an important recurrent topic in modern cryptography that deals with
the problem of two or more mutually untrusting parties that want to make computations over
their data without revealing their inputs to each other. General solutions for this seemingly
impossible problem are known for both two-party and multi-party cases with different secu-
rity guarantees [17, 63, 35, 44, 20]. These solutions mainly address the question of evaluating
boolean and arithmetic circuits in two-party and multi-party settings with computational or
unconditional security.

Protocols for secure two-party computation of boolean and arithmetic circuits constitute a
nice general solution to the problem of secure computation. However, these protocols pay a
high price in terms of efficiency in order to achieve generality. Usually, tailoring a protocol to
a specific operation achieves better computational and communication efficiency in compari-
son to computing the circuit that executes such operation through a general secure two-party
computation protocol. Protocols for different specific purposes have been proposed, such as
protocols for scalar products [34], means [45], statistics [12], equality [21], comparison [21] and
exponentiations [21].

Linear algebra operations are needed in several natural applications of secure two-party
computation, such as data mining, statistics and benchmarking. For example, statistical analysis
tasks involving linear algebra arise in application such as privacy preserving benchmarking, an
application proposed in current literature [42, 60] where two companies wish to compare their
performance without revealing to each other sensitive financial and strategical data. Another
interesting application is the use of linear programming to perform privacy preserving supply-
chain management [43, 56], where a supplier and a costumer have to agree on the best dates for
manufacturing and delivery of supplies without revealing sensitive strategical information.

In this paper we consider secure two-party computation of vector inner products, matrix
multiplications, determinants, eigenvalues and eigenvectors. Such operations can be employed
in different scenarios to solve linear systems, compute the correlation between datasets and
perform linear programming tasks. We investigate protocols tailored to each specific linear
algebra operation that we wish to compute. As opposed to general approaches to practical
secure computation such as [10, 11, 36, 41], we wish to obtain protocols that achieve high
efficiency, security and parallelism for specific operations.

Even though many classical two-party computation protocols have been proven secure in
a stand-alone setting, it is important to analyze the security of cryptographic protocols under
scenarios where many copies of the protocol are executed in parallel. The real/ideal simulation
paradigm and universal composability (UC) [13] provide widely accepted security notions for
analyzing protocols under sequential and arbitrary composition, respectively. As a consequence
of being secure under arbitrary composition, UC secure protocols and constructions can be used
as building blocks for more complex applications and other cryptographic protocols.

It is well-known that two-party computation is only possible with some additional assump-
tion, either about the computational resources available to the parties (e.g. polynomial time,
bounded memory), or some setup assumption (e.g. a noisy channel, oblivious transfer, the help
of some trusted party). In the UC framework, the scenario is even more restricted, as it is
known that protocols for two-party and multi-party functionalities cannot be build without
setup assumptions [14, 15]. Non-trivial UC-secure functionalities can be implemented consider-
ing setup assumptions such as: common reference string [14, 15, 55], public-key infrastructure [3],
trusted initializer [28], random oracle model [37], noisy-channels [27, 29], signature cards [38]
and tamper-proof hardware [40, 49, 25]. Pre-distribution of correlated randomness (e.g. pre-
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computed operations) by a trusted initializer constitutes an interesting setup assumption for
obtaining UC secure two-party protocols and is the one considered in this paper.

Trusted Initializers were introduced as part of the commodity based cryptography model by
Beaver [6, 7], which is inspired by client-server architectures. In the commodity based cryptog-
raphy model, a third party referred to as the trusted initializer (TI) correctly precomputes a
number of operations over random inputs obtaining correlated randomness. This predistributed
correlated randomness is then used by the users to compute the desired function over their own
private inputs (by “derandomizing” the pre-distributed data). The main goal of this model is
achieving very high security guarantees (i.e. unconditional security) while remaining efficient
(i.e. all the heavy computation is offloaded to the trusted initializer while the users only have
to execute simple computational operations).

1.1 Related Work

There is a long line of work in obtaining protocols for secure two-party or multiparty computation
of any function, starting with the seminal results by Yao [63] in the two-party case and Chaum
et al. [17] and Goldreich et al. [35] in the multiparty case. Currently there are a number of
approaches to performing efficient secure multiparty computation in different scenarios. Recent
efforts include optimizing Yao’s garbled circuits technique [63] for two-party computation [32,
48, 47], evaluating RAM programs [1, 41, 62], optimizing oblivious transfer based protocols
[52, 59, 2] and constructing protocols in the preprocessing model [23, 22, 24]. In this paper
we concentrate on the commodity based cryptography approach, which mostly resembles the
preprocessing model. Hence, we focus our analysis of previous literature on these two models.

A naive approach to obtain secure two-party computation for linear algebra operations based
on a trusted initializer consists in using general protocols for secure two-party computation.
Oblivious Transfer [31] is known to be complete for any two-party functionality [44] and proto-
cols for oblivious transfer in the commodity based cryptography model were introduced in [6, 5].
Hence, in theory, any linear algebra operation can be computed with a trusted initializer. How-
ever, the general protocol described in [44] requires a high number of rounds and oblivious
transfer calls.

It is also possible to perform secure computation of linear algebra operations using efficient
protocols for general secure two-party or multiparty computation in the preprocessing model
such as [4, 8, 23, 22, 24]. In this model, a preprocessing phase takes places before the actual
computation on real inputs in order to distribute correlated data to the parties, resulting in
very efficient online phases (i.e. actual computation on inputs). This model is closely related
to commodity based cryptography since it also relies on pre-distribution of correlated data that
represents precomputed operations.

Even though the currently most efficient protocols for general multiparty computation achieve
good performance, they still require a large number of rounds and complex operations in compar-
ison to protocols tailored to specific functionalities. In general, these protocols require programs
to be represented by binary circuits [52, 32, 48, 47], arithmetic circuits [8, 23, 22] or a combi-
nations of both [24]. These circuits then have to be evaluated gate by gate, which introduces
an overhead that grows with the number of gates. Moreover, general purpose secure multiparty
protocols secure against malicious adversaries (that can arbitrarily deviate from the protocol)
need to employ mechanisms that introduce extra overhead, such as message authentication codes
[8, 23, 22] and complicated circuit validation techniques [32, 48, 47]. The protocols that achieve
the best concrete performance [59, 24] are only secure against semi-honest adversaries, meaning
that they are only secure as long as the adversaries do not deviate from the protocol steps.
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In order to avoid the overhead inherent to general purpose secure multiparty computation
protocols, another line of work has been focusing on designing secure computation protocols
for specific functionalities. Cramer and Damg̊ard introduced the first constant-round uncondi-
tionally secure protocols for linear algebra in [18]. These protocols are stated in the multiparty
setting assuming access to standard constant-round protocols for generation of random shares,
addition and multiplication of shares. Departing from these building blocks, they introduce pro-
tocols for computing the determinant, characteristic polynomial and rank of matrices as well as
solving linear systems of equations. The results of [18] are subsequently improved in [19] through
a technique for securely computing the Moore-Penrose Pseudoinverse based on the same basic
building blocks of [18] that allows securely solving linear systems of equations with better com-
plexity (for a system of m linear equations with n variables this result requires m4 +n2m secure
multiplications instead of n5).

Similar problems were also studied in the two-party case with computational security in
[53], where protocols based on public-key homomorphic encryption and Yao’s garbled circuits
were proposed. Specifically, they introduce protocols for securely computing linear subspace
intersection and oblivious gaussian elimination, leading to protocols for solving linear systems
of equations. These protocols only achieve round complexity of O(n0.275) but reduce commu-
nication complexity to O(n2). These results are improved in [46], which presents protocols for
deciding if a singularity and computing the minimal polynomial of a encrypted matrices with
round complexity O(log n) and communication complexity O(n2). These protocols are applied to
securely computing rank and determinant of matrices, and to solving systems of linear equations
with similar complexities.

Another proposal for tailor-made secure two-party computation protocols for linear algebra
operations was put forth in the Ph.D. thesis of Du [30]. His thesis demonstrates the importance of
practical secure two-party computation protocols for specific tasks and proposes several protocols
for realizing such tasks. However, the protocols proposed in [30] lack a rigorous security analysis
and, in fact, there are fatal flaws in most of these protocols as noted in [34, 45]. Posterior
works provided secure protocols for some of the tasks proposed by Du: protocols for scalar
multiplication [34] (based on homomorphic encryption) and means [45] (based on building blocks
that can be obtained with unconditional security). A conference version of part of this work [26]
presented a protocol for computing the vector inner product in the trusted initializer model.
Recently, another protocol for computing the vector inner product in the trusted initializer
model was proposed in [39], however it deals with a slightly different definition of the inner
product functionality than the one considered in this paper, and requires more rounds and
operations.

The commodity based cryptography model was introduced by Beaver [6]. In this model,
commitment and oblivious transfer protocols were presented in [6, 58], protocols for some se-
cure two-party computations in [50], an oblivious polynomial evaluation protocol in [61] and a
verifiable secret sharing scheme in [28].

1.2 Our Contributions

In this paper, we introduce two-party protocols for privacy preserving computation of linear
algebra operations in a finite field over inputs provided by both parties. Namely, we first expand
on the protocols for computing vector inner products, matrix multiplication and solving systems
of linear equations that we introduced in a conference version of this paper [26], providing full
descriptions and security proofs. We then use these protocols as building blocks for obtaining new
protocols for determinants, eigenvalues and eigenvectors. All of our protocols achieve statistical
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security against static malicious adversaries in the UC model using a trusted initializer as a
setup assumption. We present protocols for securely computing the following operations:

• Inner Product: Round-optimal (2 rounds) with communication complexity of 2k + 1
elements for k elements long vectors.

• Matrix Multiplication: For multiplying m× k and k× p matrices, this protocol is con-
structed as mp (parallel) invocations of the Inner Product protocol and thus also achieves
2 rounds. The communication complexity is of mp(2k + 1) elements.

• Solving Linear Systems of Equations: For linear systems of n equations with n vari-
ables this protocol requires 5 rounds (including 2 invocations of the matrix multiplication
protocol that run in parallel). The communication complexity is of (2n3+n2)+n2+(2n2+
n) + (n2 + n) + n = 2n3 + 5n2 + 3n elements.

• Determinant: For n×n matrices, this protocol requires 5 rounds (including an invocation
of the matrix multiplication protocol). The communication complexity is of (2n3 + n2) +
n2 + n2 + n = 2n3 + 3n2 + n elements.

• Eigenvalue: For n× n matrices, this protocol requires 4 rounds (including an invocation
of the matrix multiplication protocol). The communication complexity is of (2n3 + n2) +
n2 + n2 = 2n3 + 3n2 elements.

• Eigenvector: For n×n matrices, this protocol requires 5 rounds (including an invocation
of the matrix multiplication protocol). The communication complexity is of (2n3 + n2) +
n2 + n2 + n = 2n3 + 3n2 + n elements.

These protocols enjoy the following characteristics:

• Privacy Preserving Linear Algebra Operations: Protocols for secure and private
two-party computation of vector inner products, matrix multiplications, determinants,
eigenvalues and eigenvectors.

• Universal Composability: Our protocols are proven secure in the universal compos-
ability framework, thus retaining security in complex and realistic environments.

• Unconditional Security: Our protocols remain secure even against computationally
unbounded adversaries and do not rely on any computational assumptions (under the
setup assumption that correlated randomness exists).

• Efficiency: Our protocols only require addition and multiplication over finite fields, which
can be efficiently parallelized and computed in both massive data and resource constrained
environments.

We construct protocols for each operation directly, eliminating the need of expressing each of
them in terms of boolean or arithmetic circuits, what consequently eliminates the extra overhead
in computational, communication and round complexities incurred by general purpose two-party
computation protocols. Our protocols are universally composable and achieve security against
malicious users, in contrast to some of the current most efficient protocols for general purpose
two-party computation [59, 24], which only achieve security against semi-honest adversaries. We
prove that our constructions achieve unconditional security, meaning that we do not rely on com-
putational assumptions such as in [32, 48, 47]. Moreover, our protocols do not require message
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authentication codes or any extra overhead to achieve security against malicious adversaries,
which is the case in the online phases of [8, 52, 23, 22].

The fundamental building block of the protocols introduced in this paper is a protocol for
secure two-party computation of distributed vector inner products, which is used in a straight-
forward construction of distributed matrix multiplication. These protocols were both introduced
in our conference paper [26]. For these operations, we consider a scenario where two mutually
untrusting parties A and B give private vectors (or matrices) as inputs and wish to compute
distributed operations without revealing their inputs to each other. By distributed operations we
mean that both the inputs and the outputs of a given operation are distributed among the two
parties that compute it, i.e. each party contributes part of the operations’ input and receives a
share of the operations’ output.

The matrix multiplication protocol is then used as a building block to obtain new protocols
for secure two party computation of determinants, eigenvalues and eigenvectors over sums of
matrices. In this case, we consider that each party inputs a matrix and only one of the parties
obtains the result of the operation over the sum of both inputs. The security property guarantees
that none of the parties are able to learn each other inputs.

Being based on a trusted initializer that precomputes operations, our protocols achieve high
computational and communication efficiency. The number of required rounds is significantly
smaller than in general two-party computation protocols since our protocols are tailored for
specific functionalities. Both the TI and the parties involved in the protocol are only required
to execute addition and multiplication over a finite field. Such operations are simple enough
to be executed in resource constrained environments (e.g. embedded computers) while being
easily parallelizable for simultaneous execution of several protocol instances in large scale en-
vironments (e.g. big data applications). Furthermore, our protocols are not based on specific
computational assumptions and achieve unconditional security, meaning that they resist attacks
from computationally unbounded adversaries.

In comparison to [18, 19] our protocol for solving linear systems of n equations with n vari-
ables achieve the same asymptotic round complexity but lower communication complexity as our
protocol’s communication complexity is of the order of O(n3) while their protocols require Ω(n4)
secure multiplications. Our protocols still do not achieve the same communication complexity
of O(n2) as protocols based on computational assumptions [53, 34, 46] but achieve better round
complexity without the need for computational assumptions (as do the results of [18, 19]).

We evaluate the concrete efficiency of our protocols by analyzing the concrete performance
of prototype implementations taking inputs of different sizes. We also analyze an optimized
implementation of the inner product protocol, upon which the other protocols are based. Our
implementation guarantees security in distributed linear algebra operations only incurring a
small extra computational cost in relation to a trivial implementation that does not provide any
security at all.

1.3 Organization

In Section 2, we establish notation and introduce definitions that will be used throughout the
paper. In Section 3, we revisit the protocols for computing vector inner products and matrix
multiplication that we previously introduced in [26], providing full descriptions and security
proofs. In Setion 4, we revisit the protocol for solving linear equation systems that we previously
introduced in [26], providing full descriptions and security proofs. In Section 5, we introduce
a protocol for computing determinants and analyse its security. In Section 6, we introduce a
protocol for computing eigenvalues and analyse its security. In Section 7, we introduce a protocol
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for computing eigenvectors and analyse its security. In Section 8 we analyse the complexity
and concrete efficiency of our protocols, presenting concrete performance analysis of prototype
implementations.

2 Preliminaries

In this section we establish notation and introduce definitions that will be used throughout the
paper.

2.1 Notation

Hereupon, we will denote by x
$← D an uniformly random choice of element x over the domain

D; by ⊕ a bit-wise exclusive OR of strings; and by a ‖ b the concatenation of string a with
string b. All logarithms are to the base 2. For a probabilistic polynomial-time (PPT) machine

A, we use coins(A) to denote the distribution of the internal randomness of A and a
$← A to

denote running the machine A with internal randomness distributed according to coins(A) and
obtaining the output a.

In the following, we denote by Fq the finite field of order q, by Fnq the space of all n-tuples of
elements of Fq. Fm×nq represents the space of all m× n matrices with elements belonging to Fq,
while SL(Fq, n) represents the set of all non-singular n×n matrices with elements belonging to
Fq.

Two sequences Xλ and Yλ of random variables are said to be computationally indistinguish-

able, denoted by X
c
≈ Y , if there exists a negligible function ε(·) such that for every λ ∈ N and

for every non-uniform PPT distinguisher D it holds that

|Pr [D(Xλ) = 1 ]− Pr [D(Yλ) = 1 ]| < ε(λ).

If the previous inequality holds also for all computationally unbounded distinguishers, then the

sequences are statistically close, denote X
s
≈ Y .

2.2 Commodity Based Cryptography

In this section, we briefly discuss the commodity based cryptography model introduced by
Beaver [6, 7]. This model was inspired by the client-server distributed computation model, where
a powerful server performs complex tasks on behalf of a client. It is an efficient alternative for
obtaining secure multi-party computation.

In this model, a trusted initializer precomputes certain operations that are then used by
individual parties to execute a given protocol. The parties access such operations by requesting
correlated, pre-distributed values (the commodities) to the TI before they start executing the
protocol itself. It is possible to obtain very efficient protocols in this model, since most of the
required complex operations can be delegated to the TI and then pre-distributed to the parties.
The trusted initializer is always assumed to be honest. Notably, this model has been used to
construct commitments [58, 9, 50], oblivious transfer [6, 5], verifiable secret sharing [51, 28] and
oblivious polynomial evaluation [61].

Notice that the TI has no access to the parties’ secret inputs nor does it receive any informa-
tion from the parties. The only communication required between the TI and the parties occurs
during a setup phase, when the TI pre-distributes information. Among the main advantages of
this model is the high computational efficiency that arises from the fact that the parties running
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the protocol are not required to compute complex operations but only derandomize the precom-
puted instances to match their own inputs. Moreover, since the operations are computed by a
trusted initializer and not by interaction among the parties, they generally yield perfect results
regardless of any attacks. In other words, it is possible to obtain statistically secure protocols
with low computational and communication complexity.

2.3 The Universal Composability Framework

In this section, we present a brief discussion of the Universal Composability framework. We
refer the readers to [13, 16] for further details. The main goal of the Universal Composability
framework [13] is to analyze the security of cryptographic protocols under arbitrary composi-
tion. In other words, this framework takes into consideration scenarios where many copies of a
protocol are executed concurrently with themselves and other protocols, such as the Internet.
The composition theorem presented in [13] ensures that any protocol proven to be secure under
the UC framework can also be securely composed with copies of itself and other protocols. Apart
from guaranteeing security in a realistic scenario, the UC framework also enables the utilization
of UC-secure protocols as building blocks for complex applications.

In the UC framework we consider a set of parties interacting with each other, an adversary
A that can corrupt the parties, and an environment Z. The environment is responsible for
providing the inputs for the parties and A, and receiving their outputs. The adversary A may
choose to corrupt a set of parties, thus gaining control over their communication channels and
computation. All these entities are modeled as Interactive Turing Machines.

The main idea behind the UC framework is that Z represents all activity external to the
current execution of the protocol. In order to prove the security of a specific protocol, one must
define an ideal version of the functionality that the protocol is supposed to realize and an ideal
adversary S. Then, we have to show that no Z can distinguish between an execution of the
specific protocol implementation with the parties and A, and an ideal execution with the parties
and S.

The ideal version of the protocol is called the ideal functionality F and it does exactly what
the protocol should do in a black box manner. In other words, given the inputs, the ideal
functionality follows the primitive specification and returns the output as specified. However,
the functionality must deal with the actions of corrupted parties, such as invalid inputs and
deviations from the protocol. Some interesting points about F are: the communication between
the parties and F are made by writing on their input and output tapes; S has no access to the
contents of messages sent between the parties and F unless the party is corrupted; Z cannot
see the messages sent between the parties and F (and cannot see the messages sent between the
parties in the real protocol execution).

The ideal adversary S, or simulator, is normally designed to act in the same way as the
adversary A in the interaction with the real protocol. It means that every attack that A can
do in the real protocol must be simulated by S in the ideal execution of the protocol. A point
that should be clarified here is that S does not deliver any message between the parties. It
just simulates the messages of the honest parties (if any) to the corrupted party and delivers
messages from parties to the ideal functionality. In order to obtain the inputs of the corrupted
parties, S runs an internal copy of the adversary A with which it communicates using the real
protocol.

It is said that a real protocol securely realizes an ideal functionality (i.e., the protocol imple-
mentation is secure under the UC framework) if for every adversary in the real protocol A there
exists an ideal adversary S such that every Z cannot distinguish an execution of the specific
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Functionality FDTI

FDTI runs with parties A and B and is parametrized by the security parameter λ and by an
algorithm D.

Alice’s Output: Upon receiving a message (sid , A) from A, run (OPA, OPB) ← D(1λ) if a
message (sid , B) has not been received before. Send (sid , A-gets-output) to B and (sid , OPA)
to A.

Bob’s Output: Upon receiving a message (sid , B) from B, run (OPA, OPB) ← D(1λ) if a
message (sid , A) has not been received before. Send (sid , B-gets-output) to A and (sid ,
OPB) to B.

Figure 1: The Trusted Initializer functionality.

protocol implementation with the parties and A from an execution of the ideal version with the
parties and S. This is stated formally in the following definition from [13]:

Definition 2.1 A protocol π is said to UC-realize an ideal functionality F if, for every adversary
A, there exists a simulator S such that, for every environment Z, the following holds:

EXECπ,A,Z
c
≈ IDEALF ,S,Z

Notice that EXECπ,A,Z represents the view of Z in the real protocol execution with A
and IDEALF ,S,Z represents the view of Z in the ideal execution with the simulator S. The
probability distribution is taken over the random tapes of the parties.

Obtaining computational indistinguishability between real and ideal executions guarantees
that the protocol is secure against PPT adversaries. Even though this is enough for the security
requirements of most protocols and applications, it is interesting to achieve security against
computationally unbounded adversaries. In this paper we show that the real execution of our
protocols is statistically indistinguishable from the ideal simulation, thus providing security
against attackers that have unlimited computer power.

In this work we consider security against static adversaries, i.e. the sets of corrupted and
honest parties are fixed before protocol execution and once a party is corrupted or honest it
remains so during the whole execution. In addition we use the Truster Initializer as our setup
assumption, i.e., it is assumed that the parties involved in the protocol receive data from a
trusted initializer before protocol execution. The trusted initializer functionality is described in
Figure 1 and is parametrized by an algorithm D that generates the correlated randomness that
is distributed to the two parties, denoted Alice A and Bob B.

3 Vector Inner Product and Matrix Multiplication

In this section, we present a protocol for computing the inner product of two vectors provided
by two different parties. Using this protocol as a building block, we then construct a protocol
for two-party matrix multiplication. Both protocols were first introduced in [26].
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Functionality FIP

FIP runs with parties A and B and is parametrized by the size q of the field and the length n
of the vectors.

Alice’s Input: Upon receiving a message (sid , A-input, ~x) from A, ignore any subsequent
messages from A. If ~x /∈ Fnq , then send the message (sid , Invalid-Input) to A and B and stop.
If no (sid , B-input) message has been received from B, then store ~x and sid , and send the public

delayed output (sid , A-input-received) to B; else choose u
$← Fq, set v ← 〈~x · ~y〉 − u and send

the public delayed outputs (sid , A-gets-output, u) to A and (sid , B-gets-output, v) to B.

Bob’s Input: Upon receiving a message (sid , B-input, ~y) from B, ignore any subsequent
messages from B. If ~y /∈ Fnq , then send the message (sid , Invalid-Input) to A and B and stop.
If no (sid , A-input) message has been received from A, then store ~y and sid , and send the public

delayed output (sid , B-input-received) to A; else choose u
$← Fq, set v ← 〈~x · ~y〉 − u and send

the public delayed outputs (sid , A-gets-output, u) to A and (sid , B-gets-output, v) to B.

Figure 2: The distributed inner product functionality.

3.1 Inner Product

For two vectors ~x = (x1, x2, ..., xn) and ~y = (y1, y2, ..., yn) of elements of Fq, their inner product
〈~x · ~y〉 is defined as

〈~x · ~y〉 =
n∑
i=1

xiyi.

Considering a two-party scenario, we construct a protocol for distributed inner product that
outputs two random values in Fq whose sum is equal to the original inner product of ~x and
~y. Each individual party receives only one of the random values. They can recover the inner
product value by exchanging their random outputs. Let A and B be the parties involved in the
computation, this notion of distributed inner product is defined in Table 1.

A B

Inputs ~x ∈ Fnq ~y ∈ Fnq
Outputs u

$← Fq 〈~x · ~y〉 − u

Table 1: Distributed Inner Product

In order to formally argue about the protocol security, we rewrite the previous definition as
an inner product ideal functionality FIP that is described in Figure 2.

The trusted initializer functionality for the inner product protocol is parametrized by the

algorithm DIP that samples ~x0, ~y0
$← Fnq , computes s0 ← 〈 ~x0 · ~y0〉 and outputs ~x0 to A and

(~y0, s0) to B. The protocol for computing the distributed inner product of A’s input ~x and B’s
input ~y is described in Figure 3.
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Protocol πIP

1. A and B query FDIP
TI with messages (sid , A) and (sid , B), respectively. A receives ~x0 and

B receives (~y0, s0).

2. B computes ~y1 ← ~y − ~y0 and sends it to A.

3. A aborts if ~y1 /∈ Fnq . A computes ~x1 ← ~x + ~x0, samples u
$← Fq and computes u1 ←

〈~x · ~y1〉 − u. Then A sends ( ~x1, u1) to B and outputs u.

4. B aborts if ~x1 /∈ Fnq or u1 /∈ Fq. Otherwise, it outputs v ← 〈 ~x1 · ~y0〉+ u1 − s0.

Figure 3: The distributed inner product protocol πIP .

Theorem 3.1 The distributed inner product protocol πIP described in Figure 3 securely realizes
functionality FIP in the FDIP

TI -hybrid model with unconditional security. I.e., for every static
malicious adversary A there is a simulator S such that for all environments Z

EXECπIP ,A,Z
s
≈ IDEALFIP ,S,Z .

Proof: It is straightforward to check the correctness of the protocol.

v := 〈 ~x1 · ~y0〉+ u1 − s0
= 〈(~x+ ~x0) · ~y0〉+ (〈~x · (~y − ~y0)〉 − u)− 〈 ~x0 · ~y0〉

= 〈~x · ~y0〉+ 〈 ~x0 · ~y0〉+ 〈~x · ~y〉 − 〈~x · ~y0〉 − u− 〈 ~x0 · ~y0〉

= 〈~x · ~y〉 − u

Hence the simulation for the cases where both parties are honest or both parties are corrupted
is trivial. The cases in which only one of the parties is corrupted will be dealt in the sequence.

Alice Corrupted, Bob Honest. S runs an internal (embedded) copy of A denoted Ã. Ob-
serve that Alice is corrupted, so S has access to Alice’s input ~x. The interactions of Ã with
S are those of Alice in the real protocol with the other parties, Z, the TI, and Bob. Figure 4
describes the behavior of the simulator when the different events happen. In order to distinguish
the variables of this simulated execution with Ã, primes are used.

We make the following observations:

1. Independent of A, Z can make Bob send no input or an invalid input. In the simulation,
S behavior after sending the message copies this perfectly.

2. Whatever Ã’s strategy is, it either sends a valid or an invalid message to the simulated
Bob. If the message is invalid, both the simulated and the ideal protocol will send Invalid-
Input to the two parties, which will be forwarded to Z.
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Simulator (Alice Corrupted, Bob Honest)

S reacts in the following way to the varied events that happen during the execution.

Onset of the Simulation: Choose ~x0
′ $← Fnq and send it to Ã when it queries the TI.

Get input ~x: S forwards ~x from Z to Ã, i.e. ~x′ ← ~x.

Message B-input-received: S feeds ~y1
′ $← Fnq to Ã.

Message ( ~x1
′, u′1) from Ã: If the message is invalid, then S sends something invalid to FIP .

Otherwise it sends the message (sid , A-input, ~x) to FIP .

Output u′: As long as no response from FIP is received, S does nothing, even if this means
waiting forever. When an Invalid-Input message is received, S forwards it to Z. When an
A-Gets-Output message is received, S does the following: It lets the functionality deliver the
message B-Gets-Output. S also intercepts the simulated output u′ and verifies if this value
is consistent with the input ~x, and the simulated messages. If consistent, S substitutes the
simulated output u′ for the real output u obtained from FIP by setting uS ← u; else it sets
uS ← u′. Then uS is sent to Z through Alice’s interface.

Figure 4: The simulator for the case where Alice is corrupted and Bob is honest.
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3. Even if Ã sent a valid message to the simulated Bob, it can still deviate from the protocol
by sending a completely different output. Here, deviate means to send an output u′ that
is not consistent with the input ~x′ = ~x and the messages exchanged during the protocol
execution. In the case Ã did deviate, S detects this and does nothing, i.e. it forwards the
output produced by Ã directly to Z.

4. In the case Ã did follow the protocol, S substitutes Ã’s output u′ for the output u obtained
from FIP .

If we consider Ã (and A) as deterministic algorithms whose probabilism comes from a random
tape, it follows that Ã behavior is completely determined by these random bits, called sA, the
incoming message ~x0

′, the input ~x and the incoming message ~y1
′. We already know that the

random bits sA and the input ~x have the same distribution in the real and ideal protocol, because
of the way the model is defined.

So in order to show that ∀A ∃S ∀Z : EXECπIP ,A,Z
s
≈ IDEALFIP ,S,Z , it suffices to show that

the incoming message ~x0
′ produced by S has the same distribution as the incoming message ~x0

produced by the TI in the real protocol. But this is trivial, since both are generated from the
same distribution, the uniform distribution on Fnq .

In addition, we must show that ~y1
′ produced by S and ~y1 sent by Bob have the same distribution.

Observe that ~y1 := ~y− ~y0, with ~y0
$← Fnq . Since both TI and Bob are honest in the real protocol,

it follows that both ~y1
′ and ~y1 are generated according to the uniform distribution on Fnq .

So we conclude that Ã’s incoming messages in the simulated protocol have a distribution identical
to A’s incoming message in the real protocol. It follows therefore that the ideal and real protocol
distributions are perfectly indistinguishable from Z point of view, which completes the proof.

Alice Honest, Bob Corrupted. The proof of this case is very much along the same lines
as the previous case:S runs an internal (embedded) copy of A called Ã. Observe that Bob is
corrupted, so S has access to Bob’s input ~y. The interactions of Ã with S are those of Bob in
the real protocol with the other parties, Z, the TI, and Alice. Figure 5 describes the behavior
of the simulator when the different events happen.

The proof of indistinguishability is almost identical to the previous case and is omitted.

3.2 Matrix Multiplication

Matrix multiplication basically consists in computing inner products of the rows and columns
of the given matrices. Hence, it is fairly straightforward to realize matrix multiplication from
a vector inner product functionality. Analogously to the inner product operation described in
Section 3.1, a distributed matrix multiplication operation takes as input two matrices L and M ,
outputting two random matrices R and C whose sum is equal to the product of L and M . This
operation is defined in Table 2.

In order to formally argue about protocol security, we rewrite the previous definition as an
ideal functionality FMM in Figure 6. Note that it is a straightforward adaption of FIP .

A distributed matrix multiplication protocol is described in Figure 7. It assumes access to
the vector inner product functionality FIP , and takes matrix L as input from A and matrix M as
input from B. It can be instantiated based on Protocol πIP . In this case, the algorithm specifying
the outputs of the TI, DMM , will simply be the one generating the correlated randomness

12



Simulator (Alice Honest, Bob Corrupted)

S reacts in the following way to the varied events that happen during the execution.

Onset of the Simulation: S sets ~y0
′ $← Fnq , s′0

$← Fq and feeds (~y0
′, s′0) to Ã.

Get input ~y: S forwards ~y from Z to Ã, i.e. ~y′ ← ~y.

Message ~y1
′ from Ã: If Ã sends something invalid, then S sends something invalid to FIP .

S sends the message (sid , B-input, ~y) to FIP . S lets the functionality deliver the message
B-Input-Received.

Message (sid , B-gets-output, v): S sets ( ~x1
′ $← Fnq , u′1

$← Fnq and feeds ( ~x1
′, u′1) to Ã; S

lets the functionality deliver the message A-Gets-Output. S intercepts the simulated output
v′ = 〈 ~x1′ · ~y0′〉+u′1−s′0 and verifies if this value is consistent with the input ~y, and the simulated
messages. If consistent, S substitutes the simulated output v′ with the real output v obtained
from FIP by setting vS ← v; else it sets vS ← v′. As long as no v′ from Ã is received, S does
not forward the message B-Gets-Output, even if this means waiting forever. Then vS is sent
to Z through Bob’s interface.

Figure 5: The simulator for the case where Alice is honest and Bob is corrupted.
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A B

Inputs L ∈ Fi×jq M ∈ Fj×kq

Outputs R
$← Fi×kq C ← LM −R

Table 2: Distributed Matrix Multiplication

Functionality FMM

FMM runs with parties A and B and is parametrized by the size q of the field and the dimensions
of the matrices.

Alice’s Input: Upon receiving a message (sid , A-input, L) from A, ignore any subsequent
messages from A. If L /∈ Fi×jq , then send the message (sid , Invalid-Input) to A and B and
stop. If no (sid , B-input) message has been received from B, then store L and sid , and send the

public delayed output (sid , A-input-received) to B; else choose R
$← Fi×kq , set C ← LM −R

and send the public delayed outputs (sid , A-gets-output, R) to A and (sid , B-gets-output,
C) to B.

Bob’s Input: Upon receiving a message (sid , B-input, M) from B, ignore any subsequent

messages from B. If M /∈ Fj×kq , then send the message (sid , Invalid-Input) to A and B and
stop. If no (sid , A-input) message has been received from A, then store M and sid , and send the

public delayed output (sid , B-input-received) to A; else choose R
$← Fi×kq , set C ← LM −R

and send the public delayed outputs (sid , A-gets-output, R) to A and (sid , B-gets-output,
C) to B.

Figure 6: The distributed matrix multiplication functionality.

necessary to the i · k independent executions of πIP . Once the correlated randomness are pre-
distributed by the TI, the instances of the underlying inner product protocol can be executed
in parallel, yielding an efficient protocol with low round complexity. This matrix multiplication
protocol will be used as a building block for the other constructions presented in this paper.

Theorem 3.2 The distributed matrix multiplication protocol πMM described in Figure 7 securely
realizes functionality FMM in the FIP -hybrid model with unconditional security. I.e., for every
static malicious adversary A there is a simulator S such that for all environments Z

EXECπMM ,A,Z
s
≈ IDEALFMM ,S,Z .

Proof: The correctness of the protocol follows trivially from the correctness of the distributed
inner product functionality. Notice that no cryptographic operations are performed in the
previous protocol, except for calls to the distributed inner product functionality. Hence, the
security of this protocol follows very straightforwardly from the UC composition theorem [13].
Intuitively, the simulator acts as FIP when interacting with corrupted parties, having access
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Protocol πMM

1. For all 1 ≤ n ≤ i, 1 ≤ p ≤ k, A and B do the following:

• A selects the n-th line of L, denoted as ~̀n, and sends (sid , A-input, ~̀n) to an instance
of FIP with n and p encoded in sid .

• B selects the p-th column of M , denoted as ~mp, and sends (sid , B-input, ~mp) to an
instance of FIP with n and p encoded in sid .

2. In order to obtain the final matrix product, A and B do the following:

• Upon receiving all the messages A-gets-output, A constructs matrix R by setting
rn,p ← un,p, where for all 1 ≤ n ≤ i, 1 ≤ p ≤ k, un,p is the output received from the
instance of FIP corresponding to this n and p.

• Upon receiving all the messages B-gets-output, B constructs matrix C by setting
cn,p ← vn,p, where for all 1 ≤ n ≤ i, 1 ≤ p ≤ k, vn,p is the output received from the
instance of FIP corresponding to this n and p.

Figure 7: The distributed matrix multiplication protocol πMM .

to the inputs sent by corrupt parties to FIP . The simulator extracts their input matrices by
aggregating the row (or column) vectors sent to FIP during execution.

4 Solving Linear Equations

We now show how to use the previously constructed matrix multiplication protocol in order to
obtain a new protocol for securely solving linear equations. The functionality is described in
Figure 8.

The solution is based on Du’s approach [30]. Note that the solution ~z to the linear equation
(L + M)~z = ~x + ~y is equal to the solution ~z in P (L + M)QQ−1~z = P (~x + ~y), in which P and
Q are random, invertible matrices over Fq only known by Bob. In the protocol, we let Alice
solve the blinded equation P (L+M)Q~t = P (~x+ ~y), so t = Q−1~z. In other words, the solution
that Alice gets to see is the final solution ~z, blinded with a random invertible matrix Q−1. To
allow Alice to compute P (L + M)Q and P (~x + ~y) without her learning M or ~y, we use the
distributed matrix multiplication as a subprotocol. Though the protocol notation below seems
to suggest otherwise, it should be pointed out that when the subprotocols are instantiated, the
initialization phase for the main protocol and the subprotocols takes place at the same time.
The TI functionality is in this case similar to the previous one, but in addition to the data
used by the matrix multiplication protocols, it also pre-distributes the other data needed by the
protocol described in Figure 9.

Theorem 4.1 The linear equation solver protocol πLES described in Figure 9 securely realizes
functionality FLES in the FMM ,FDLES

TI -hybrid model with unconditional security. I.e., for every
static malicious adversary A there is a simulator S such that for all environments Z

EXECπLES ,A,Z
s
≈ IDEALFLES ,S,Z .
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Functionality FLES

FLES runs with parties A and B and is parametrized by the size q of the field and n.

Alice’s Input: Upon receiving a message (sid , A-input, L, ~x) from A, ignore any subsequent
messages from A. If L /∈ SL(Fq, n) or ~x /∈ Fnq , then send the message (sid , Invalid-Input) to
A and B and stop. If no (sid , B-input) message has been received from B, then store L, ~x and
sid , and send the public delayed output (sid , A-input-received) to B; else find ~z such that
(L+M)~z = ~x+ ~y and send the public delayed output (sid , B-gets-output, ~z) to B.

Bob’s Input: Upon receiving a message (sid , B-input, M , ~y) from B, ignore any subsequent
messages from B. If M /∈ SL(Fq, n) or ~y /∈ Fnq , then send the message (sid , Invalid-Input) to
A and B and stop. If no (sid , A-input) message has been received from A, then store M , ~y and
sid , and send the public delayed output (sid , B-input-received) to A; else find ~z such that
(L+M)~z = ~x+ ~y and send the public delayed output (sid , B-gets-output, ~z) to B.

Figure 8: The linear equation solver functionality.

Protocol πLES

1. For Q
$← SL(Fq, n) and R,U

$← Fn×nq , A gets (R, V = RQ + U) from the TI and B gets
(Q,U).

2. B generates P
$← SL(Fq, n). B and A interact using FMM with inputs P and L, respec-

tively, and receive the outputs PL − R̃ and R̃, respectively. In parallel they run another
instance of FMM with inputs P and ~x, respectively, and receive the outputs P~x − ~s and
~s, respectively.

3. A send the matrix R− R̃ to B.

4. B computes W ← (PL−R)Q+PMQ−U and ~c← (P~x−~s) +P~y, and sends (W,~c) to A.

5. A check if the message is valid, aborting if it is not. Otherwise, she finds ~t such that
(W + V )~t = ~c+ ~s and sends it to B.

6. Bob computes ~z = Q~t.

Figure 9: The linear equation solver protocol πLES .
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Simulator (Alice Corrupted, Bob Honest)

S reacts in the following way to the varied events that happen during the execution.

Onset of the Simulation: Choose the pre-distributed data following the correct procedures
of the trusted initializer functionality and sends Alice’s pre-distributed data to Ã.

Get input (L, ~x): S forwards (L, ~x) from Z to Ã, i.e. L′ ← L and ~x′ ← ~x. S also chooses

~y′
$← Fnq and M ′, P ′

$← SL(Fq, n).

Message B-input-received: S computes W ′ and ~c′, and sends (W ′,~c′) to Ã.

Message ~t′ from Ã: If the message is invalid, then S sends something invalid to FLES .
Otherwise it sends the message (sid , A-input, L, ~x) to FLES .

Message B-gets-output: S lets FLES deliver the message.

Figure 10: The simulator for the case where Alice is corrupted and Bob is honest.

Proof: The correctness of the protocol is trivially verified: W +V = (PL−R)Q+PMQ−U +
RQ+U = P (L+M)Q and ~c+ ~s = (P~x− ~s) + P~y + ~s = P (~x+ ~y), so Alice solves the equation
P (L + M)Q~t = P (~x + ~y). In order to find the solution to (X + Y )~z = ~x + ~y, Bob only has to
compute ~z = Q~t. The simulation for the cases where both parties are honest or both parties are
corrupted is trivial. The cases in which only one of the parties is corrupted will be dealt in the
sequence.

Alice Corrupted, Bob Honest. S runs an internal (embedded) copy of A called Ã. Observe
that Alice is corrupted, so S has access to Alice’s inputs ~x and L. The interactions of Ã with
S are those of Alice in the real protocol with the other parties, Z, the TI, and Bob. Figure 10
describes the behavior of the simulator when the different events happen.

We make the following observations:

1. Independent of A, Z can make Bob send no input or an invalid input. In the simulation,
S behavior after sending the message copies this perfectly.

2. Whatever Ã’s strategy is, it either sends a valid or an invalid message as being A’s one. If
the message is invalid, both the simulated and the ideal protocol will send Invalid-Input
to the two parties, which will be forwarded to Z.

If we consider Ã (and A) as deterministic algorithms whose probabilism comes from a random
tape, it follows that Ã behavior is completely determined by these random bits, called sA, the
pre-distributed data, the inputs L and ~x, and the incoming message (W ′,~c′). We already know
that the random bits sA and the inputs L and ~x have the same distribution in the real and ideal
protocol, because of the way the model is defined.
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Simulator (Alice Honest, Bob Corrupted)

S reacts in the following way to the varied events that happen during the execution.

Onset of the Simulation: Choose the pre-distributed data following the correct procedures
of the trusted initializer Functionality and sends Bob’s pre-distributed data to Ã.

Get input (M,~y): S forwards (M,~y) from Z to Ã, i.e. M ′ ← M and ~y′ ← ~y. S also chooses

~x′
$← Fnq and L′

$← SL(Fq, n).

Message (M ′,~c′) from Ã: If the message is invalid, then S sends something invalid to FLES .
Otherwise it sends the message (sid , A-input, M , ~y) to FLES . S lets the functionality deliver
the message B-input-received.

Message (sid , B-gets-output, ~z): S computes t′ and sends it to Ã. S intercepts the simulated
output ~z′ and verifies if this value is consistent with the values used in this simulated execution
(note that S knows all these values as it plays the role of the trusted initializer). If consistent,
S substitutes the simulated output ~z′ with the real output ~z obtained from FLES by setting
~zS = ~z; else it sets ~zS = ~z′. As long as no ~z′ from Ã is received, S does not forward the
message B-gets-output, even if this means waiting forever. Then ~zS is sent to Z through
Bob’s interface.

Figure 11: The simulator for the case where Alice is honest and Bob is corrupted.

So in order to show that ∀A ∃S ∀Z : EXECπLES ,A,Z
s
≈ IDEALFLES ,S,Z , it suffices to show

that the pre-distributed data produced by S has the same distribution as the pre-distributed
data produced by the TI in the real protocol. But this is trivial, since S generate these data
using the same distribution that the TI uses in the real protocol.

In addition, we must show that (W ′,~c′) produced by S and (W,~c) sent by Bob have the same

distribution. Observe that M := (PL−R)Q+PMQ−U with U
$← Fn×nq and ~c := (P~x−~s)+P~y

with P
$← SL(Fq, n). Since both TI and Bob are honest in the real protocol, it follows that both

(W ′,~c′) and (W,~c) are generated according to the uniform distribution.

So we conclude that Ã’s incoming messages in the simulated protocol have a distribution identical
to A’s incoming message in the real protocol. It follows therefore that the ideal and real protocol
distributions are perfectly indistinguishable from Z point of view, which completes the proof for
this case.

Alice Honest, Bob Corrupted The proof of this case is very much along the same lines
as the previous case: S runs an internal (embedded) copy of A called Ã. Observe that Bob is
corrupted, so S has access to Bob’s input ~y. The interactions of Ã with S are those of Bob in the
real protocol with the other parties, Z, the TI, and Alice. We explain how S acts in Figure 11.

The proof of indistinguishability is almost identical to the previous case and is omitted.
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Functionality FDET

FDET runs with parties A and B and is parametrized by the size q of the field and n.

Alice’s Input: Upon receiving a message (sid , A-input, L) from A, ignore any subsequent
messages from A. If L /∈ Fn×nq , then send the message (sid , Invalid-Input) to A and B and
stop. If no (sid , B-input) message has been received from B, then store L and sid , and send
the public delayed output (sid , A-input-received) to B; else compute z ← det(L + M) and
send the public delayed output (sid , B-gets-output, z) to B.

Bob’s Input: Upon receiving a message (sid , B-input, M) from B, ignore any subsequent
messages from B. If M /∈ Fn×nq , then send the message (sid , Invalid-Input) to A and B and
stop. If no (sid , A-input) message has been received from A, then store M and sid , and send
the public delayed output (sid , B-input-received) to A; else compute z ← det(L + M) and
send the public delayed output (sid , B-gets-output, z) to B.

Figure 12: The distributed determinant functionality.

5 Determinant

In this section we present a two-party protocol for computing the determinant of a sum of two
matrices. This protocol relies on access to a distributed matrix multiplication functionality
FMM , and can be instantiated with the protocol described in Section 3.2.

We consider a distributed two-party determinant operation where players A and B input
matrices L and M , respectively. The operation outputs the determinant of L + M to B and
⊥ to A (i.e. A does not learn anything). This operation is illustrated in Table 3. In order to
formally argue about protocol security, the definition is rewritten as an ideal functionality FDET
in Figure 12.

A B

Inputs L ∈ Fn×nq M ∈ Fn×nq

Outputs ⊥ det(L+M)

Table 3: Distributed Determinant

We present in Figure 13 a protocol πDET that implements such functionality. It is essentially
a simplified version of protocol πLES for solving linear equations (see Section 4), with trivial
modifications in the last steps (i.e., the blinded output forward from A to B and the computation
of B’s output). It also assumes access to a distributed matrix multiplication functionality FMM

and to a trusted initializer functionality FDDET
TI , which also for Q

$← SL(Fq, n) and U,R
$← Fn×nq

outputs (R, V = RQ + U) to A and (Q,U) to B. Also in this case when FMM is instantiated
using πMM , the pre-distribution phase performed by the TI occurs at the same time for the data
needed by πDET and by πMM .

The intuition for the security of the protocol is that A cannot extract M from W because
it is “hidden” by the multiplication between matrices P and Q which are unknown to A. In
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Protocol πDET

1. For Q
$← SL(Fq, n) and U,R

$← Fn×nq , A gets (R, V = RQ + U) from the TI and B gets
(Q,U).

2. B generates P
$← SL(Fq, n). B and A interact using FMM with inputs P and L, respec-

tively, and receive the outputs PL− R̃ and R̃, respectively.

3. A send the matrix R− R̃ to B.

4. B computes W ← (PL−R)Q+ PMQ− U and sends it to A.

5. A check if W /∈ Fn×nq , aborting if it is not. Otherwise, she computes t = det(W + V ) and
sends it to B.

6. Bob computes z = t
det(P ) det(Q) and outputs it.

Figure 13: The protocol πDET for computing the determinant.

addition, the terms (PL−R) and U are unknown to A as well. Since the resulting determinant
is a number in Fq and, in general, det(M1 +M2) 6= det(M1) + det(M2), B cannot extract L from
his output, neither from t.

Theorem 5.1 The protocol πDET for computing the determinant described in Figure 13 securely
realizes functionality FDET in the FMM ,FDDET

TI -hybrid model with unconditional security. I.e.,
for every static malicious adversary A there is a simulator S such that for all environments Z

EXECπDET ,A,Z
s
≈ IDEALFDET ,S,Z .

Proof: The correctness of the protocol can be verified as follows. Note that

W + V = (PL−R)Q+ PMQ− U +RQ+ U = P (L+M)Q.

It is known that for any square matrices M1 and M2, the following relation holds det(M1M2) =
det(M1) det(M2). Moreover, det(P ) 6= 0 and det(Q) 6= 0 since P and Q are non-singular
matrices. Hence the following relation holds:

z =
t

det(P ) det(Q)
=

det(P (L+M)Q)

det(P ) det(Q)
= det(L+M).

The simulation for the case where both parties are honest is trivial. The same holds for the
case where both parties are corrupted. In the remaining cases, the description of S’s actions
are essentially a simplified version of that in Section 4 (with the trivial adaptions needed) and
is thus omitted.
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Functionality FEigenvalue

FEigenvalue runs with parties A and B and is parametrized by the size q of the field and n.

Alice’s Input: Upon receiving a message (sid , A-input, L) from A, ignore any subsequent
messages from A. If L /∈ Fn×nq , then send the message (sid , Invalid-Input) to A and B and
stop. If no (sid , B-input) message has been received from B, then store L and sid , and send
the public delayed output (sid , A-input-received) to B; else determine the solutions of the
equation det(L+M − λI) = 0, form a vector ~λ with them and send the public delayed output
(sid , A-gets-output, ~λ) to A.

Bob’s Input: Upon receiving a message (sid , B-input, M) from B, ignore any subsequent
messages from B. If M /∈ Fn×nq , then send the message (sid , Invalid-Input) to A and B and
stop. If no (sid , A-input) message has been received from A, then store M and sid , and send
the public delayed output (sid , B-input-received) to A; else determine the solutions of the
equation det(L+M − λI) = 0, form a vector ~λ with them and send the public delayed output
(sid , A-gets-output, ~λ) to A.

Figure 14: The distributed eigenvalues functionality.

6 Eigenvalue

Using the same protocol structure as in the previous sections, it is possible to design a protocol
that computes the eigenvalues corresponding to the sum of two matrices in a private way (i.e.,
without revealing any additional information about the matrices). Note that such protocols
will obviously have the same limitations (regarding the types of matrices/output for which the
computation can be done efficiently) as the traditional algorithms for finding the eigenvalues. In
this case Alice is the one getting the output, since there is no blinded output involved (but the
parties can be reversed). The formal functionality is presented in Figure 14 and the protocol
realizing it in Figure 15.

Theorem 6.1 The protocol πEigenvalue for computing the eigenvalues described in Figure 15

securely realizes functionality FEigenvalue in the FMM ,F
DEigenvalue

TI -hybrid model with uncondi-
tional security. I.e., for every static malicious adversary A there is a simulator S such that for
all environments Z

EXECπEigenvalue,A,Z
s
≈ IDEALFEigenvalue,S,Z .

Proof: The correctness of the protocol can be verified as follows. Note that

W + V = (PL−R)Q+ PTQ− U +RQ+ U = P (L+M − λI)Q.

Since P and Q are non-singular matrices, det(P ) 6= 0 and det(Q) 6= 0. Therefore

det(W + V ) = 0 ⇔ det(P (L+M − λI)Q) = 0

⇔ det(P ) det(L+M − λI) det(Q) = 0

⇔ det(L+M − λI) = 0.
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Protocol πEigenvalue

1. For Q
$← SL(Fq, n) and U,R

$← Fn×nq , A gets (R, V = RQ + U) from the TI and B gets
(Q,U).

2. B generates P
$← SL(Fq, n). B and A interact using FMM with inputs P and L, respec-

tively, and receive the outputs PL− R̃ and R̃, respectively.

3. A send the matrix R− R̃ to B.

4. Considering λ as a variable, B computes T ←M − λI and W ← (PL−R)Q+ PTQ−U ,
and sends W to A.

5. A check if W /∈ Fn×nq , aborting if it is not. Otherwise, she computes the solutions of the
equation det(W + V ) = 0 and outputs a vector containing them.

Figure 15: The protocol πEigenvalue for computing the eigenvalues.

The description of the simulator is similar to the ones in the previous sections and is thus
omitted.

7 Eigenvector

It is also possible to design a protocol that enables Bob to obtain an eigenvector corresponding
to a specific eigenvalue. The functionality is described in Figure 16 and the protocol realizing it
in Figure 17.

Theorem 7.1 The protocol πEigenvector for computing an eigenvector described in Figure 17

securely realizes functionality FEigenvector in the FMM ,F
DEigenvector

TI -hybrid model with uncondi-
tional security. I.e., for every static malicious adversary A there is a simulator S such that for
all environments Z

EXECπEigenvector,A,Z
s
≈ IDEALFEigenvector,S,Z .

Proof: The correctness of the protocol can be verified as follows. We have that

W + V = (PL−R)Q+ PTQ− U +RQ+ U = P (L+M − λiI)Q.

Therefore A calculates P (L+M −λiI)Q~t = P~0⇒ (L+M −λiI)Q~t and B can find the solution
of the equation (L+M − λiI)~z = 0, by computing ~z = Q~t.

The description of the simulator is similar to the ones presented before.

8 Complexity and Efficiency

In order to assess the concrete efficiency and practicality of our protocols, we analyse the concrete
performance of a prototype implementation of our protocol suite. Our protocols are implemented
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Functionality FEigenvector

FEigenvector runs with parties A and B and is parametrized by the size q of the field and n.

Alice’s Input: Upon receiving a message (sid , A-input, L) from A, ignore any subsequent
messages from A. If L /∈ Fn×nq , then send the message (sid , Invalid-Input) to A and B and
stop. If no (sid , B-input) message has been received from B, then store L and sid , and send
the public delayed output (sid , A-input-received) to B; else check if λi is an eigenvalue of
L+M and send the message (sid , Invalid-Input) to A and B and stop if it is not. If it is an
eigenvalue, compute ~z that is an eigenvector corresponding to the matrix L+M and eigenvalue
λi, and send the public delayed output (sid , A-gets-output, ~z) to B.

Bob’s Input: Upon receiving a message (sid , B-input, M , λi) from B, ignore any subsequent
messages from B. If M /∈ Fn×nq , then send the message (sid , Invalid-Input) to A and B and
stop. If no (sid , A-input) message has been received from A, then store M , λi and sid , and
send the public delayed output (sid , B-input-received) to A; else check if λi is an eigenvalue
of L+M and send the message (sid , Invalid-Input) to A and B and stop if it is not. If it is an
eigenvalue, compute ~z that is an eigenvector corresponding to the matrix L+M and eigenvalue
λi, and send the public delayed output (sid , A-gets-output, ~z) to B.

Figure 16: The distributed eigenvector functionality.

Protocol πEigenvector

1. For Q
$← SL(Fq, n) and U,R

$← Fn×nq , A gets (R, V = RQ + U) from the TI and B gets
(Q,U).

2. B generates P
$← SL(Fq, n). B and A interact using FMM with inputs P and L, respec-

tively, and receive the outputs PL− R̃ and R̃, respectively.

3. A send the matrix R− R̃ to B.

4. Bob computes T ←M − λiI and W ← (PL−R)Q+ PTQ− U , and sends W to A.

5. A check if W /∈ Fn×nq , aborting if it is not. Otherwise, she computes ~t such that (W+V )~t =
0 and sends it to B.

6. Bob computes ~z = Q~t and outputs it.

Figure 17: The protocol πEigenvector for computing an eigenvector.
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over Zp with p = 65521 and the execution time of each protocol is evaluated for different input
sizes. In all of our experiments, we execute each protocol 50 times for each input size and
determine the average execution time. The execution times of each protocol are described in
table 4.

The protocols are implemented in C++ using the libraries NTL 6.1 for algebraic operations
over Zp and Boost 1.55 for asynchronous network communication. The performance of the
implementations was evaluated in two computers with an Intel(R) Xeon(R) E7-2850 processor
at 2.00GHz and 8 GB RAM running Linux Kernel 3.2.0-88 connected through a Gigabit Ethernet
network. Even though the CPUs used in the evaluation hosts have four cores, the implementation
uses only one thread.

n
πMM

(s)
πLES
(s)

πDET
(s)

πEigenvalue
(s)

πEigenvector
(s)

50 3.126 6.273 3.145 3.147 3.144

60 4.937 9.910 4.969 4.970 4.967

70 6.120 12.294 6.168 6.170 6.168

80 8.987 18.054 9.059 9.062 9.058

90 12.460 25.034 12.563 12.567 12.559

100 13.239 26.643 13.385 13.389 13.373

Table 4: Execution times (in seconds) of protocols πMM , πLES , πDET , πEigenvalue, πEigenvector
taking as input a n× n square matrix.

As remarked before, our implementations are not optimized, thus not showcasing the full po-
tential of our protocols. The main issue in these implementations is the overhead of performing
I/O with the NTL library, which converts numbers into an ASCII representation that greatly
increases concrete communication complexity. Hence, we devote special attention to the dis-
tributed inner product protocol πIP , which is the core of our constructions for other distributed
linear algebra operations. We analyse the concrete performance of an optimized implementation
of πIP using only native C types and operators for the necessary algebraic operations. In this
scenario, we consider as input vectors with different numbers of 16 bit elements (represented by
the uint16 t type). The concrete performance of this optimized implementation with different
input sizes is analysed and compared to the performance of a trivial protocol that computes the
same functionality without guaranteeing any security. The computational overhead of optimized
πIP over the trivial protocol is calculated as the ratio between the execution times of πIP and
the trivial protocol. The resulting data can be seen in Table 5.

From the data presented in Table 5 it is clear that our approaches guarantee security in
distributed linear algebra operations incurring only a very low overhead for small datasets. In
the specific case of πIP , as the datasets grow, the overhead also grows but it still requires less than
double the execution time of a trivial implementation of the same functionality. Moreover, notice
that the optimized implementation is significantly faster than the NTL based implementation.
These data provide evidence that our protocols can achieve even better performance than our
NTL based prototype implementations.

As mentioned before, an alternative approach to performing privacy preserving linear algebra
operations consists in building circuits that compute each operation and evaluating them with
a general purpose secure computation protocol [23, 22, 24]. In order to provide a baseline for
the comparison of our specific purpose protocols with generic secure computation protocols,
we analyse the performance of the online phase of the ABY framework [24] when evaluating a
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Vector
Length

πIP
NTL (s)

πIP
Optimized (s)

Trivial
(s)

Overhead
(%)

100 0.000531 0.000443 .000429 3.27

1000 0.001546 0.000506 0.000464 9.03

10000 0.010201 0.003061 0.001922 59.3

100000 0.096850 0.021670 0.012934 67.5

1000000 1.292219 0.139930 0.074516 87.8

Table 5: Execution times (in seconds) of NTL based and optimized implementations of protocol
πIP and a trivial protocol implementing the same functionality without security guarantees
for different vector lengths. The overhead incurred by the optimized implementation of πIP is
calculated as the ratio between its execution time and that of the trivial protocol.

circuit that computes the inner product. To this end, we use the reference implementation of
an arithmetic circuit that computes the inner product and its respective test application for the
ABY framework, provided by its authors1. This implementation also considers vectors composed
of 16 bits elements and uses only one thread. In Table 6, we present a comparison between the
execution times of the optimized implementation of πIP and of the online phase of ABY when
evaluating the inner product circuit.

Vector
Length

ABY [24]
IP Circuit (s)

πIP
Optimized (s)

100 0.005598 0.000443

1000 0.478718 0.000506

2000 1.823921 0.001145

3000 3.843890 0.001261

4000 6.854674 0.001608

Table 6: Execution times (in seconds) of optimized implementation of πIP and of the online
phase of the ABY framework [24] when evaluating an arithmetic circuit that computes the inner
product.

The data presented in Table 6 show that our specific purpose protocol enjoys performance
gains in comparison to the ABY framework when evaluating the inner product functionality.
However, one has to be careful and take these results within the right context. The ABY
framework achieves generic secure computation of any circuit, while our protocols are restricted
to their specific functionalities. On the other hand, our protocols achieve composable security
against active adversaries, while the ABY framework is only secure in the passive case. Finally,
ABY does not require a trusted initializer. If generic solutions secure against active adversaries
were compared to our protocol, the performance gain would be more apparent because of the
cost of generating/verifying message authentication codes to ensure security against malicious
adversaries [23, 22, 24].

1https://github.com/encryptogroup/ABY/tree/public/src/examples/innerproduct, version of July 29,
2015.
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9 Conclusion

We have proposed protocols for securely computing linear algebra problems in a two party sce-
nario. Our solutions are efficient, universally composable and information-theoretically secure.
We work in the commodity-based model, where the parties have available (as a setup assump-
tion) pre-computed correlated data at the beginning of the protocol. This pre-computed data
can be pre-distributed by a trusted authority (a trusted initializer) that need not engage further-
more in the remaining of the protocol. The data can also be pre-computed by the two players
using computational assumptions. If this pre-computation step is universally composable (UC),
the overall protocol will remain UC secure albeit no longer information-theoretically secure.

9.1 Future Works

In cases where the presence of a trusted initializer is undesirable (or infeasible), it would be
an interesting sequel to this work to study how it can be substituted by a two-party protocol
between Alice and Bob during the pre-processing phase. A simple but not optimized approach
would be to compute multiplicative triples (a, b, c) such that a ·b = c and reduce the TI behavior
to computations over secure triples. In particular, such protocols can be constructed from
additively homomorphic encryption schemes (e.g. Paillier [54]) through the techniques used in
off-line phases of general multiparty computation protocols in the preprocessing model [23, 22]
as outlined in [57]. One would have to be careful to preserve universal composability of the
resulting protocol. The approach used in [23, 22] could be a way to achieve this.

Another approach consists in using oblivious transfer to compute the necessary multipli-
cations [33]. Both approaches have been shown to achieve good performance, with OT based
generation requiring only tens of miliseconds per triple. We refer the interested reader to [24, 57]
for comprehensive surveys of the details and efficiency of different methods for generating mul-
tiplicative triples. The difficult part here would be to adapt the protocols proposed in [24] to
the UC scenario. We remark, however, that the performance of the protocols presented in this
paper is not affected by the efficiency of the trusted initializer, since its data can be precomputed
independently from our protocol execution. In other words, the trusted initializer can compute
its data at any given time before the actual inputs are given to our protocols, allowing for a large
number of multiplicative triples to be precomputed and readily available to our protocols for
future executions. Studying the scenarios here described are interesting sequels to this work.
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pages 494–503, Montréal, Québec, Canada, May 19–21, 2002. ACM Press. (Cited on page 1.)

[16] Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh, editor, Advances
in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 265–281,
Santa Barbara, CA, USA, August 17–21, 2003. Springer, Berlin, Germany. (Cited on page 7.)
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