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Abstract. Oblivious transfer (OT) is a fundamental two-party cryptographic primitive that
implies secure multiparty computation. In this paper, we introduce the first OT based on the
Learning Parity with Noise (LPN) problem. More specifically, we use the LPN variant that was
introduced by Alekhnovich (FOCS 2003). We prove that our protocol is secure against active
static adversaries in the Universal Composability framework in the common reference string
model. Our constructions are based solely on a LPN style assumption and thus represents a clear
next step from current code-based OT protocols, which require an additional assumption related
to the indistinguishability of public keys from random matrices. Our constructions are inspired
by the techniques used to obtain OT based on the McEliece cryptosystem.

1 Introduction

Oblivious transfer (OT) [46, 44, 21] was introduced in the early days of public-key cryptography and
has thereafter played an essential role in modern cryptography. They imply, among other things,
the possibility of performing two-party secure computation [24, 34] and multi-party computation [13].
Initially many variants of OT were considered, but they are equivalent [12] and therefore in this work
we will focus on the most common one: one-out-of-two bit oblivious transfer. In this variant there is a
sender who inputs two bits x0 and x1, and a receiver who chooses which bit xc he wants to learn. On
one hand, the receiver should learn xc, but should have no information about xc. On the other hand,
the sender should not learn the choice bit c.

Given the importance of OT protocols, constructions were extensively studied and nowadays so-
lutions are known based on both generic computational assumptions such as enhanced trapdoor per-
mutations [21], and also based on specific computational assumptions such as: the hardness of factor-
ing [44, 27], the Decisional Diffie-Hellman (DDH) assumption [4, 39, 1, 47], the Quadratic Residuosity
(QR) assumption [27], the N’th residuosity assumption [27], the hardness of the Subgroup Decision
Problem [36], and the McEliece assumptions [19]. Since Shor’s algorithm [45] would make factoring
and computing discrete logarithms easy in the case that quantum computers become practical, an
important question is determining which post-quantum assumptions are sufficient to implement OT
protocols. LPN-based/code-based cryptography is one of the main alternatives for a post-quantum
world and thus our result improves the understanding in this area.

As with most cryptographic primitives, the first OT protocols considered simple security models
(in this case the stand alone model in which there is only one execution of the protocol isolated from
the rest of the world). Afterwards, stronger models were considered, such as security in the Universal
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Composability (UC) framework by Canetti [5], which allows arbitrary composition of the protocols.
This latter notion is the most desirable security goal for oblivious transfer protocols, since it allows
these protocols to be used as building blocks of more complex primitives and protocols.

In this work we will present the first OT protocol based on a variant of the Learning Parity with
Noise (LPN) problem that was introduced by Alekhnovich [2, 3]. The protocol achieves UC security
against active static adversaries following ideas similar to the ones that Dowsley et al. [19, 20, 15]
used to build OT protocols based on the McEliece assumptions [37]. It is well-known that UC-secure
oblivious transfer is impossible in the plain model [6, 7], so our solution is in the common reference
string (CRS) model.

1.1 Related Works

Cryptography based on Codes and LPN: McEliece [37] proposed a cryptosystem based on the
hardness of the syndrome decoding problem. Later on, Niederreiter [40] proposed a cryptosystem that is
the dual of McEliece’s cryptosystem. These cryptosystems can be modified to achieve stronger notions
of security such as IND-CPA [41, 42] and IND-CCA2 [18, 22, 16]. Based on these cryptosystems it is
possible to implement both stand alone secure [19, 20] and UC-secure [15] OT protocols. The main
drawback of these code-based schemes is that, besides assuming the hardness of the decoding problem,
they also assume that the adversary is not able to recover the hidden structure of the keys, which
is formalized by assuming that the public-keys are indistinguishable from random matrices. But this
later problem is far less studied than the decoding one.

Building public-key encryption schemes from the original LPN problem is a difficult task and so
far the only schemes are based on a variant of the LPN problem introduced by Alekhnovich in [2, 3],
which yields semantically secure encryption [2, 3, 30] and IND-CCA2 secure encryption by Döttling et
al. [17]. Moreover, other cryptographic primitives were built based solely on the Alekhnovich variant
of the LPN problem, such as: pseudo random generators (PRG) [30], message authentication codes
(MAC) [30], pseudo random functions (PRFs) [30], signature schemes with constant overhead [30],
zero-knowledge [31], and commitments [31].

Furthermore, Ishai et al. present a protocol for secure two-party and multiparty computation with
constant computational overhead in the semi-honest model and slightly superlinear computational
overhead in the malicious model based on Alekhnovich’s LPN [30]. However, their secure computation
constructions assume the existence of bit oblivious transfer, which wasn’t built from Alekhnovich’s
LPN until now (not even with stand-alone security).

Universally Composable OT: Peikert et al. developed a general framework for obtaining efficient,
round optimal UC-secure OT in the CRS model [43] that provides instantiations based on the DDH,
QR and Learning With Errors (LWE) [43]. Constructions of OT protocols that achieve UC security
against different kinds of adversaries under various setup assumptions are also known to be possible
under the Decisional Linear (DLIN) assumption [14, 32], the DDH and the strong RSA assumptions [23]
and the Decisional Composite Residuosity (DCR) assumption [32, 11].

Another approach to obtain UC-secure oblivious transfer protocols is to take a stand alone secure
OT protocol and use compilers [29, 26, 10] to achieve an UC-secure protocol. However these compil-
ers require access to UC-secure string commitment schemes that were not yet built from the LPN
assumption.

1.2 Our Contributions

In this work we address the open problem of constructing oblivious transfer based on the assumption
that LPN is hard. We focus on the LPN variant introduced by Alekhnovich in [2, 3]. Our main result
is the first Oblivious Transfer protocol based on LPN. Our protocol is Universally Composable and
offers security against active static adversaries, i.e. adversaries that may deviate in any arbitrary way
from the protocol but are forced to corrupt their desired parties before protocol execution starts. It is



well-known that UC realizing any interesting multiparty functionality (among them OT) is impossible
in the plain model (i.e. without a setup assumption) [6, 7]. Hence, we build our protocol in the Common
Reference String (CRS) model, where the parties are assumed to have access to a fixed string generated
before protocol execution starts.

The protocol is based on the cut-and-choose approach of [15], although with a different proof strat-
egy. This approach basically requires a stand-alone passively secure OT protocol and an extractable
commitment scheme as building blocks. We show that a stand alone OT protocol (with passive or
active security) can be obtained in a similar way as in [19, 20]. We also observe that we can obtain
an extractable commitment scheme from an IND-CPA secure public key encryption scheme based on
Alekhnovich’s LPN assumption introduced in [17].

Besides proving that it is possible to construct oblivious transfer from variants of the LPN as-
sumption, our results greatly improve on previous code-based OT protocols by relying on a weaker
assumption. Moreover, together with the CCA2 secure Alekhnovich cryptosystem [17] and the LPN
based proofs of knowledge and commitments [31], our results contribute towards obtaining more
complex cryptographic protocols based on coding based assumptions weaker than McEliece.

1.3 Outline

In Section 2 we introduce the notation, assumptions and definitions used throughout the paper. In
Section 3, we present a basic stand alone OT protocol that will serve as a building block. In Section 4,
we present the active secure universally composable OT protocol based on cut-and-choose techniques.
Finally, in Section 5, we conclude with directions for future research.

2 Preliminaries

In this section we introduce our notation and also recall the relevant definitions.

2.1 Notation

If x is a string, then |x| denotes its length, while |X | represents the cardinality of a set X . If n ∈ N
then 1n denotes the string of n ones. s ← S denotes the operation of choosing an element s of a set
S uniformly at random. w ← AO(x, y, . . .) represents the act of running the algorithm A with inputs
x, y, . . ., oracle access to O and producing output w. AO(x; r) denotes the execution with coins r. We
denote by Pr (E) the probability that the event E occurs. If a and b are two strings of bits or two
matrices, we denote by a|b their concatenation. The transpose of a matrix M is MT . If a and b are
two strings of bits, we denote by 〈a, b〉 their dot product modulo 2 and by a ⊕ b their bitwise XOR.
Un is an oracle that returns an uniformly random element of {0, 1}n. If b is a bit, then b denotes its
inverse (i.e. 1 − b). Let F2 denote the finite field with 2 elements. For a parameter ρ, χρ denotes the
Bernoulli distribution that outputs 1 with probability ρ.

2.2 Encryption Scheme

In this section we describe the LPN-based public-key encryption scheme that was introduced by
Döttling et al. [17] and that will be used in this paper. Note that we use the simplest version of
their cryptosystem, the one which only achieves IND-CPA security (which is already enough for our
purposes) and does not allow witness recovery.

Let n be the security parameter, n1, `1, `2 ∈ O(n2/(1−2ε)), and ρ ∈ O(n−(1+2ε)/(1−2ε)). Let G ∈
F`2×n1
2 be the generator-matrix of a binary linear error-correcting code C and DecodeC an efficient

decoding procedure for C that corrects up to α`2 errors for a constant α.
Key Generation: Sample a uniformly random matrix A ∈ F`1×n1

2 , a matrix T from χ`2×`1ρ and a

matrix X from χ`2×n1
ρ . Set B = TA+X. Set pk = (A,B,G) and sk = T . Output (pk, sk).



Encryption Enc(pk,m): Given a message m ∈ Fn1
2 and the public key pk = (A,B,G) as input,

sample s from χn1
ρ , e1 from χ`1ρ and e2 from χ`2ρ . Then set ct1 = As + e1 and ct2 = Bs + e2 + Gm.

Output ct = (ct1, ct2).
Decryption Dec(sk, ct): Given a ciphertext ct = (ct1, ct2) and a secret key sk = T as input,

compute y = ct2 − T ct1 and m = DecodeC(y). Output m.
The IND-CPA security of this scheme was proved under the following assumption which is equiv-

alent to Alekhnovich’s hardness assumption [17].

Assumption 1 Let n1 ∈ N be the problem parameter, m = O(n1), ε > 0 and ρ = ρ(n1) = O(n
−1/2−ε
1 ).

Choose uniformly at random A ∈ Fm×n1
2 and x ∈ Fn1

2 . Sample e according to χmρ . The problem is,
given A and y ∈ Fm2 , to decide whether y is distributed according to Ax+ e or uniformly at random.

The current best algorithms to attack this problem require time of the order 2n
1/2−ε

and for this
reason by setting n1 = O(n2/(1−2ε)) where n is the security parameter of the encryption scheme the
hardness is normalized to 2Θ(n).

2.3 Extractable Commitment Schemes

A string commitment scheme is said to be extractable if there exists a polynomial-time simulator that
is able to obtain the committed value m before the Open phase. In the CRS model, we will build
an extractable commitment scheme based on the encryption scheme from the previous section in the
following way. The CRS contains a public key pk of the cryptosystem and the scheme works as follows:

– Comcrs(m) The sender encrypts m under the public key pk with randomness (s, e1, e2) and sends
the corresponding ciphertext ct to the receiver as a commitment.

– Opencrs(m) The sender sends the message m and the randomness (s, e1, e2) used in the commitment
phase. The receiver checks if the encryption of m with the randomness (s, e1, e2) results in the
ciphertext ct that he received before. Additionally, for a fixed constant γ > 1 such that γρ < α/3,
he checks if the Hamming weights of s, e1 and e2 are respectively smaller than γρn1, γρ`1 and
γρ`2. If all tests are passed, the receiver accepts the opening as correct.

Note that in the case that both parties are honest, the Hamming weight tests will be passed
with overwhelming probability, as it was shown in the proof of the cryptosystem [17] that larger
Hamming weights only occur with negligible probability, so the correctness of the commitment scheme
follows. The hiding property follows trivially from the IND-CPA security of the encryption scheme.
For the binding property, first notice that the Hamming weight tests performed during the opening
phase ensure that the error term Xs + e2 − Te1 that would appear in a decryption operation of
Enc(pk,m; s, e1, e2) would be within the decoding limit of C and so the decryption would have been
successfully performed and m recovered (see the proof of correctness of [17] for details). I.e., for any
opening information (m, s, e1, e2) that passes the tests, we have Dec(sk,Enc(pk,m; s, e1, e2)) = m and
Enc(pk,m; s, e1, e2) = ct. Thus, due to the uniqueness of the decryption, there is only one m that can
pass all the tests performed in the opening phase.

In order to extract the committed values, the simulator generates a key pair (pk, sk) for the cryp-
tosystem and sets the CRS to pk. With the knowledge of the secret key sk, he can extract from any ct
the only value m that can be successfully opened in a later stage.

2.4 Universal Composability

The Universal Composability framework was introduced by Canetti in [5] to analyze the security
of cryptographic protocols and primitives under arbitrary composition. In this framework, protocol
security is analyzed by comparing an ideal world execution and a real world execution. The comparison
is performed by an environment Z, which is represented by a PPT machine and has direct access to



all inputs and outputs of the individual parties and to the adversary A. In the ideal world execution,
dummy parties (possibly controlled by a PPT simulator S) interact directly with the ideal functionality
F , which works as trusted third party that computes the desired function or primitive. In the real
world execution, several PPT parties (possibly corrupted by a real world adversary A) interact with
each other by means of a protocol π that realizes the ideal functionality. The real world execution is
represented by the ensemble EXECπ,A,Z , while the ideal execution is represented by the IDEALF,S,Z .
The rationale behind this framework lies in showing that the environment Z (that represents all the
things that happen outside of the protocol execution) is not able to efficiently distinguish between
EXECπ,A,Z and IDEALF,S,Z , thus implying that the real world protocol is as secure as the ideal
functionality. Security in the UC framework is formally defined as:4

Theorem 1. A protocol π is said to UC-realize an ideal functionality F if, for every PPT adversary
A, there exists a PPT simulator S such that, for every PPT environment Z, the following holds:

EXECπ,A,Z
c
≈ IDEALF,S,Z

Adversarial Model In this work we consider security against static adversaries, i.e. the adversary
corrupts parties before the protocol execution and corrupted parties remain so during the whole exe-
cution. Moreover, we consider active adversaries, which may arbitrarily deviate from the protocol in
order to perform an attack.

Setup Assumptions The security of our protocol is proved in the Common Reference String (CRS)
model (referred to as the FCRS − hybrid model in [5]), where protocol parties are assumed to have
access to a fixed string generated according to a specific distribution before protocol execution starts,
in a so called setup phase. The CRS ideal functionality FCRS is formally presented below.

Common Reference String Ideal Functionality The formal definition of the CRS ideal function-
ality FDCRS is taken from [9].

Functionality FDCRS

FDCRS runs with parties (P1, ..., Pn) and is parametrized by an algo-
rithm D.

• When receiving a message (sid, Pi, Pj) from Pi, let crs ← D(1n),
send (sid, crs) to Pi and send (crs, Pi, Pj) to the adversary. Next, when
receiving (sid, Pi, Pj) from Pj (and only Pj ), send (sid, crs) to Pj and
to the adversary, and halt.

Oblivious Transfer Ideal Functionality The basic 1-out-of-2 oblivious transfer functionality FOT
as defined in [8] is presented bellow.

4 For the sake of brevity, we refer the reader to Canetti’s work [5] for further details and definitions regarding
the UC framework.



Functionality FOT

FOT interacts with a sender S and a receiver R.

• Upon receiving a message (sid, sender, x0, x1) from S, where each
xi ∈ {0, 1}` , store (x0, x1) (the length of the strings is fixed and known
to all parties).

• Upon receiving a message (sid, receiver, c) from R, check if a
(sid, sender, · · ·) message was previously sent. If yes, send (sid, xc)
to R, sid to the adversary S and halt. If not, send nothing to R (but
continue running).

Similarly to the framework of [43], our protocols reuse the same CRS for multiple oblivious transfer
invocations. In order to achieve this, we employ the same techniques of [43]. Namely, we “wrap” each
single execution of FOT with a multi session extension F̂OT of the OT functionality, which handles
the multiple independent execution of the OT protocol and coordinates the interaction with parties.
The security of the resulting protocol is implied by the UC theorem with joint state (JUC) [9], which
states that any protocol π operating in the FOT − hybrid model can be securely emulated in the real
world by appropriately composing π with a single execution of a protocol ρ that implements F̂OT .

3 Basic Stand Alone OT Protocol

We first present a basic version of our protocol that is secure only against passive adversaries, then
in section 4 we will improve the protocol in order to make it UC-secure against active adversaries.
Our construction builds on a IND-CPA secure cryptosystem following the paradigm of [4], previously
employed in [19] to obtain OT based on the McEliece assumptions. R sends two keys to S, one is a
proper public-key for which he knows the corresponding secret-key and the other is a “random key”
for which he does not know the corresponding trapdoor (in our case this is just a random matrix, for
which the decoding problem is assumed to be hard). The keys should be such that S cannot tell them
apart, which is the case in our protocol. When in possession of the keys, S encrypts x0 and x1 using
the respective keys and sends the ciphertexts to R. R can recover the bit that was encrypted using the
key for which he knows the secret-key, but not the other bit since the decoding problem is assumed to
be difficult.

Let the inputs of S be the bits x0 and x1 and c be R’s choice bit. The OT protocol based on the
LPN-based IND-CPA secure cryptosystem described in Section 2.2 works as follows.

Protocol 1

1. R runs the key generation algorithm to obtain a public-key pk = (A,B,G) and a secret-key sk.
He sets pkc = pk, samples uniformly random matrices of the same size as the public key matrices
A′ ∈ F`1×n1

2 , B′ ∈ F`2×n1
2 , G′ ∈ F`2×n1

2 and sets pkc = (A⊕ A′, B ⊕ B′, G⊕G′). Finally he sends
pk0 and pk1 to S.

2. S encrypts the messages x0 ∈ Fn1
2 and x1 ∈ Fn1

2 using the keys pk0 and pk1, respectively, and sends
the ciphertexts ct0 and ct1 to R.

3. R decrypts ctc using the secret-key sk and outputs xc.

The next theorem formally states the security of the above protocol.

Theorem 2. Protocol 1 is complete and secure for both S and R against passive attacks under As-
sumption 1.



Proof. Passive adversaries always follow the protocol instructions, so the completeness and security of
the protocol can be proved as follows.

Completeness: Since R has the corresponding secret key and the cryptosystem is itself complete, R
can recover the bit xc.

Security for S: Let R̃ be an honest-but-curious receiver. Note that pkc is completely random and
for such keys the encryptions of x0 and x1 are computationally indistinguishable from random strings
and thus R̃ cannot learn any information about xc [17].

Security for R: It was proved in [31, 17] that the public-key of the cryptosystem is pseudorandom.
Hence S cannot distinguish the pseudorandom key pkc from the completely random key pkc. Since
these are the only information that she receives, she cannot learn anything about R’s choice.

3.1 Obtaining an Stand Alone Active Secure OT Protocol

Notice that, if R is allowed to deviate from Protocol 1, he could generate another valid public-key
pk′ and set pkc = pk′. Hence, he would be able to decrypt both bits x0 and x1, breaking the security
for S. Moreover, the issue of composability and concurrent execution is not addressed by Protocol 1.
Thus, the protocol presented in the previous section is only secure in the stand alone case against
semi-honest adversaries.

The next step for obtaining active secure universally composable OT consists in constructing an
active secure protocol in the stand alone model. In order to achieve this, we can apply techniques from
the active secure stand alone protocol in [19] to convert Protocol 1 into an active secure protocol. As
in the protocol from [19] this is done by adding parallel repetition and a cut-and-choose phase to the
semi-honest protocol in order to guarantee that R is following the protocol with high probability. For
the sake of brevity, we will provide a brief description of the final active secure stand alone protocol,
we refer interested readers to [19] for the detailed description.

The main idea to obtain security against a malicious adversary is to have S control the random
matrices (A′, B′, G′) that are added to the valid key. The protocol starts by requiring R to commit
to its valid key pkc before seeing (A′, B′, G′). After the commitment, S sends (A′, B′, G′) to R, who
computes a scrambled key pkc. R sends only pk1 = (Ã, B̃, G̃) to S, who is able to compute pk0 =
(Ã⊕A′, B̃ ⊕B′, G̃⊕G′). Finally, S can either complete the protocol by using pk0, pk1 to encrypt and
send its messages to R or require R to open its commitment to pkc (therefore using this instance as
a test instance). If R opens its commitments, S is able to check whether either pk0 or pk1 is equal to
the committed value, which means that R is following the protocol.

Active security can be obtained by executing several randomized copies of the above protocol in
parallel and performing a cut-and-choose phase. In this construction, R runs each parallel instance of
the protocol using a random choice bit di, which results in the execution of several random OTs. In the
cut-and-choose phase, S requires R to open half of its commitments to valid public-keys and verifies
if R was following the protocol for those instances. If S does not detect any cheating, R derandomizes
the instances related to the unopened commitments and S completes the transfer. Notice, that S does
not learn anything about R’s choice bit, since the opened commitments are related to randomized
OTs.

4 Universally Composable Active Secure OT

In this section, we construct an universally composable OT protocol secure against active static ad-
versaries in the Common Reference String model. Using cut-and-choose techniques similar to [15] we
depart from a stand alone OT protocol described in Section 3. However, an extractable commitment is
employed instead of regular commitment scheme, allowing the simulator to cheat and obtain necessary
information to carry out the simulation.



In the universally composable protocol, the receiver R generates a number of valid public keys
Ki,di for random di’s and commits to them. In contrast to [15], both players run a coin tossing
protocol to generate the random paddings Ri that are used by R to scramble each valid public key as
Ki,di

= Ki,di + Ri. R sends all Ki,1 keys to the sender S, who retrieves keys Ki,0 = Ki,1 + Ri. Next,
another coin tossing protocol is run between S and R to obtain a random string Ω. For each bit equal
to 1 in Ω, R opens the corresponding commitments to valid public keys for verification, as described in
Section 3. For each bit equal to 0 in Ω, R sends to S information that derandomizes the corresponding
public key pairs such that the valid public key corresponds to his choice bit. S uses the corresponding
public key pairs to encrypt an additive share of its messages such that R can only retrieve a message
if it’s able to decrypt all ciphertexts.

We use the LPN-based IND-CPA secure public key cryptosystem from [17] (described in Section 2.2)
as a building block for encryption and extractable commitments (described in Section 2.3). In the
following protocol, parameter ω controls the number of parallel executions of randomized OTs. The
protocol’s security parameter is composed of ω and the underlying cryptosystem’s security parameter
n. The protocol has 10 rounds and communication complexity in the order of O(ωn). The exact
communication complexity depends on the relation between ω and n, which in turn depends on the
desired security level and the hardness of solving Alekhnovich’s LPN problem with the currently best
attack.

Protocol 2
Inputs: The sender S takes as input two bits x0 and x1, while the receiver R takes as input a choice
bit c.
Common reference string: A random public key ck used for the commitment scheme.

1. Upon being activated with their inputs, the parties query FCRS with (sid,S,R) and receive
(sid, crs) as answer.

2. R initiates the first round by performing the following actions:

(a) R initially samples a random bit string d ← {0, 1}ω, where, di denotes each bit in d for
i = 1, . . . , ω.

(b) For i = 1, . . . , ω, R generates a public-key pki and a secret-key ski, and sets Ki,di = pki =
(Ai, Bi, Gi).

(c) R commits to all public keys Ki,di by sending to S the message (sid,Comck(K1,d1), . . . ,
Comck(Kω,dω )).

3. Both parties run a coin tossing protocol in order to obtain random matrices:

(a) S samples uniformly random matrices of the same size as the public key matrices A′i ∈ F`1×n1
2 ,

B′i ∈ F`2×n1
2 , G′i ∈ F`2×n1

2 , assigns R′i = (A′i, B
′
i, G
′
i) and sends a commitment (sid,Comck(R

′
1),

. . . ,Comck(R
′
ω)) to R.

(b) For i = 1, . . . , ω, R samples uniformly random A′′i ∈ F`1×n1
2 , B′′i ∈ F`2×n1

2 , G′′i ∈ F`2×n1
2 ,

assigns R′′i = (A′′i , B
′′
i , G

′′
i ) and sends (sid, R′′1 , . . . , R

′′
ω) to S.

(c) S opens its commitments and for i = 1, . . . , ω both parties compute Ri = (Āi = A′i +A′′i , B̄i =
B′i +B′′i , C̄i = C ′i + C ′′i ).

4. R computes the remaining keys as follows:

(a) For i = 1, . . . , ω, R sets Ki,di
= Ki,di +Ri = (Ai + Āi, Bi + B̄i, Gi + Ḡi), scrambling the valid

keys related to the random choice bit using the random matrices obtained in the coin tossing.
(b) R sends all the resulting keys Ki,1 = (Ãi, B̃i, G̃i) to S as (sid,K1,1, . . . ,Kω,1).

5. S computes Ki,0 = Ki,1+Ri = (Ãi+Āi, B̃i+B̄i, G̃i+Ḡi) obtaining the public key pairs Ki,0,Ki,1,
for i = 1, . . . , ω.

6. Both parties run a coin tossing protocol in order to obtain a random bit string Ω:

(a) S samples a random bit string v ← {0, 1}ω and sends a commitment (sid,Comck(v)) to R.
(b) R chooses a random bit string v′ and sends (sid, v′) to S.
(c) S opens its commitment and both parties compute Ω = v ⊕ v′.



7. Let I be the set of indexes i ∈ {1, . . . , ω} such that Ωi = 1 and let J be the set of indexes
j ∈ {1, . . . , ω} such that Ωj = 0. R performs the following actions:

– Verification: For each i ∈ I, R opens the commitments toKi,di by sending (sid,Openck(Ki,di)).
– Derandomization: For each j ∈ J , let ρj be a reordering bit such that if ρj = 1 the keys
Kj,0,Kj,1 are swapped and if ρj = 0 they are left as they are. For each j ∈ J , R sends (sid, ρj)
to S in such a way that, after the reordering, all the keys Kj,c are valid.5

8. For each opening (sid,Openck(Ki,di)) that it receives, S checks that the public key pair Ki,0,Ki,1

is honestly generated (i.e. that there exists b ∈ {0, 1} s.t. Ki,b = Ki,di and Ki,b = Ki,di ⊕ Ri). If
this check fails for at least one public key pair S aborts, otherwise it continues as follows:

– For each reordering bit ρj received by S, it derandomizes the corresponding public key pair by

computing (K̂j,0, K̂j,1) = Kj,0⊕ρ,Kj,1⊕ρ.
– Let µ be the number of indexes in J , and let j1, ..., jµ denote each of these indexes. For
j = j1, ..., jµ, S generates µ bits xj,0 such that xj1,0⊕· · ·⊕xjµ,0 = x0 and µ bits xj,1 such that
xj1,1 ⊕ · · · ⊕ xjµ,1 = x1.

– For j = j1, ..., jµ, S encrypts xj,0 under public key K̂j,0 and encrypts xj,1 under public key

K̂j,1 by computing ctj,0 = Enc(K̂j,0, xj,0) and ctj,1 = Enc(K̂j,1, xj,1).
– S sends all ciphertexts to R as (sid, (ctj1,0, ctj1,1), . . . , (ctjµ,0, ctjµ,1)).

9. For j = j1, ..., jµ, R decrypts the ciphertexts related to xc by computing xj,c = Dec(skj , ctj,c).
If any of the decryption attempts fail, R outputs a random xc ← {0, 1}. Otherwise, R outputs
xc = xj1,c ⊕ . . .⊕ xjµ,c.

Correctness It is clear that the protocol runs in polynomial time. The classical coin tossing protocol
ensures that the string Ω and matrices Ri are uniformly distributed and the commitment hiding
property ensures that S cannot obtain any information about the keys in the unopened commitments.

Notice that, after the reordering, all the public key pairs (K̂j,0, K̂j,1) are such that K̂j,c is a valid

public key and K̂j,c is a scrambled public key (i.e. summed with the random matrices in Rj). Thus, R
is able to decrypt all of the ciphertexts ctj,c for j = j1, ..., jµ, obtaining all bits xj,c that are necessary to
compute the bit xc = xj1,c⊕ . . .⊕xjµ,c. On the other hand, R cannot obtain xc through decrypting the
ciphertexts cti,c, since they were generated under the scrambled keys. S cannot obtain the choice bit c
by distinguishing the valid public keys from randomized keys, since the public-key of the cryptosystem
is pseudorandom [31, 17].

Theorem 3. Protocol 2 securely realizes the functionality FOT in the FCRS-hybrid model under As-
sumption 1. Let π denote Protocol 2. For every PPT static malicious adversary A there is a PPT
simulator S such that for all PPT environment Z, the following holds:

EXECπ,A,Z
c
≈ IDEALFOT ,S,Z

4.1 Security Proof

In this section we analyse the security of Protocol 2 by constructing a simulator S that interacts with
FOT such that no environment Z can distinguish between interactions with a static adversary A in the
real world and interactions with S in the ideal world. The formal description of the simulator and the
full proof of Theorem 3 showing that execution with S is indeed indistinguishable from execution with
A are left for the full version of this paper. We first present trivial simulation cases (where both parties
are honest or corrupted) and then consider the cases where only S or only R is corrupted separately.
The simulators are based on techniques introduced in [35] and [15]. For each corruption scenario, S
5 If the operation performed with ρ is seen as computing (K̂j,0, K̂j,1) = Kj,0⊕ρ,Kj,1⊕ρ, the choice of ρ can be

seen as ρ = dj ⊕ c. Here R makes sure that the public keys in the unopened commitments that will be used
to encrypt the bit xc (related to its choice bit) are valid public keys.



works as follows:

Simulating Communication with Z: S writes all the messages received from Z in A’s input tape,
simulating A’s environment. Also, S writes all messages from A’s output tape to its own output tape,
forwarding them to Z.

Simulating trivial cases: If both S and R are corrupted, S simply runs A internally. Notice that A
will generate the messages from both corrupted S and R. If neither S and R are corrupted, S runs the
protocol between honest S and R internally on the inputs provided by Z. All messages are delivered
to A.

Simulator for a Corrupted S If only S is corrupted, the simulator S has to extract the bits x0
and x1 (the adversary’s input) by interacting with adversary A through Protocol 2. The main trick
for doing this lies in cheating the coin tossing phase by means of the underlying commitment scheme’s
extractability. The simulator will use this ability to construct public key pairs where both keys are
valid (allowing it to obtain both bits) and pass the corrupted S’s verification without getting caught.
S sends the x0 and x1 obtained after decryption to FOT and terminates. The simulator S is formally
described as follows:

Simulating FCRS: S generates a commitment key ck← Gen(1n) for which he knows the secret key tk
and sets crs = ck. Later on, the secret key will be used as a trapdoor to extract unopened commitments.
When the parties query FCRS , S hands them (sid, crs).

When the dummy S is activated, S proceeds as follows:

1. S initiates the first round by performing the following actions:

(a) S initially samples a random bit string d ← {0, 1}ω, where di denotes each bit in d for i =
1, . . . , ω.

(b) For i = 1, . . . , ω, S generates a public-key pki and a secret-key ski, and sets Ki,di = pki =
(Ai, Bi, Gi).

(c) S commits to all public keys Ki,di by sending to A the message (sid,Comck(K1,d1), . . . ,
Comck(Kω,dω )).

2. S performs the coin tossing to generate the random matrices as follows:

(a) Upon receiving (sid,Comck(R
′
1), . . . ,Comck(R

′
ω)) from A, S extracts the R′i = (A′i, B

′
i, G
′
i).

(b) S chooses public-keys pki,di = (Ai, Bi, Gi) with the respective secret-key, sets Ki,di
= pki,di

and computes R′′i = R′i ⊕ pki,di = (Ai + A′i, Bi + B′i, Gi + G′i) for i = 1, . . . , ω. S sends
(sid, R′′1 , . . . , R

′′
ω) to A.

3. Upon receiving the openings from A, S sends pk1,1, . . . , pkω,1 to A.
4. S simulates the coin tossing:

– Upon receiving (sid,Comck(v)) from A, S chooses a random bit string v′ ← {0, 1}ω and sends
to A.

– Upon receiving an opening (sid,Openck(v)) from A, S computes Ω = v⊕v′ and stores (sid, Ω).
However, If A does not correctly open its commitment (sid,Comck(v)), then S sends ⊥ to FOT ,
simulating an invalid opening and halts.

5. After the coin tossing, S opens the commitments needed for verification and simulates reordering.
Recall that i represents the indexes for which Ωi = 1 and j represents the indexes for which Ωj = 0.
– Verification: For each i, S opens the commitments to Ki,di by sending (sid,Openck(Ki,di)).
– Derandomization: For every j, S samples a random reordering bit ρj ← {0, 1}. For each j,
S sends (sid, ρj) to A. 6

6 The reordering bit performs the same function described in the protocol for a honest receiver.



6. Upon receiving (sid, (ctj1,0, ctj1,1), . . . , (ctjµ,0, ctjµ,1)), S uses the instructions of an honest receiver
to decrypt and reconstruct both bits x0 and x1. For j = j1, ..., jµ, S decrypts the ciphertexts related
to xdi by computing xj,di = Dec(skj,di , ctj,di) and the ciphertexts related to xdi by computing
xj,di = Dec(skj,di , ctj,di) (notice that S knows all secret keys skj,di , skj,di since it cheated in the
random padding generation). S obtains xdi = xj1,di ⊕ . . . ⊕ xjµ,di and xdi = xj1,di ⊕ . . . ⊕ xjµ,di .
However, if A does not reply with a valid message or any of the decryption attempts fail, then S
samples two random bits x0, x1 ← {0, 1}.

7. S completes the simulation by sending (sid, sender, x0, x1) to FOT as S’s input and halts.

Lemma 1. (Computational security for R) Let π denote Protocol 2, for every PPT static malicious
adversary A that corrupts only S and every PPT environment Z, the following holds under Assump-
tion 1:

EXECπ,A,Z
c
≈ IDEALFOT ,S,Z

Proof. Simulator S only deviates from Protocol 2 in choosing the matrices R′′i , but this is indistin-
guishable from real protocol behavior since the public-keys of the cryptosystem are indistinguishable
from random matrices of the same size. Later on, this will allow S to obtain both bits x0 and x1.

Notice thatA opens its commitments with invalid values with at most negligible probability because
of the commitment scheme’s binding property. Hence, the coin tossing phase will succeed with high
probability. The random reordering bits ρj sent by S are indistinguishable from real reordering bits
sent in the protocol since the public keys are pseudorandom. Once again, A would have to distinguish
the keys Kj,dj ,Kj,dj

from random matrices in order to detect that ρj is not generated as in the real

protocol.
S is able to obtain both x0 and x1 since both public keys are valid in the pairs Kj,dj ,Kj,dj

used to

encrypt A’s messages and S knows the corresponding secret keys by cheating in the random paddings
generation.

Simulator for a Corrupted R In this case where only R is corrupted, the simulator has to extract
the choice bit c (the adversary’s input) by interacting with the adversary A through Protocol 2. First,
simulator S sets the CRS in such a way that it can extract the commitments sent by A in the first
step. S runs the protocol as an honest S, only deviating to extract the commitments containing the
valid public key sent by A. After the public key pairs are reordered, S verifies which key K̂j,0 or K̂j,1

corresponds to the valid public key Kj,dj in the extracted (but unopened) commitment. The choice

bit is determined as the bit c such that K̂j,c = Kj,dj . S sends c to FOT , obtaining xc in return. S
then encrypts xc and a dummy x1−c using the procedure of a honest sender, sends the corresponding
message to A and terminates. The simulator S is formally described as follows:

Simulating FCRS: S generates a commitment key ck← Gen(1n) for which he knows the secret key tk
and sets crs = ck. Later on, the secret key will be used as a trapdoor to extract unopened commitments.
When the parties query FCRS , S hands them (sid, crs).

When the dummy R is activated, S proceeds as follows:

1. Upon receiving (sid,Comck(K1,d1), . . . ,Comck(Kω,dω )) from A, S extract the commitments and
stores (sid,K1,d1 , . . . ,Kω,dω ).

2. S simulates the coin tossing to obtain random matrices as follows:

(a) S samples uniformly random matrices of the same size as the public key matrices A′i ∈ F`1×n1
2 ,

B′i ∈ F`2×n1
2 , G′i ∈ F`2×n1

2 , assigns R′i = (A′i, B
′
i, G
′
i) and sends a commitment (sid,Comck(R

′
1),

. . . ,Comck(R
′
ω)) to to A.

(b) Upon receiving (sid, R′′1 , . . . , R
′′
ω) from A, S opens its commitments and both parties compute

Ri =
(
Āi = A′i +A′′i , B̄i = B′i +B′′i , C̄i = C ′i + C ′′i

)
for i = 1, . . . , ω.



(c) Upon receiving (sid,K1,1, . . . ,Kω,1) for Ki,1 = (Ãi, B̃i, G̃i) from A, S computes Ki,0 = Ki,1 +

Ri = (Ãi + Āi, B̃i + B̄i, G̃i + Ḡi) obtaining the public key pairs Ki,0,Ki,1, for i = 1, . . . , ω. .

3. Simulating the coin tossing phase:

– S samples a random bit string v ← {0, 1}ω and sends a commitment (sid,Comck(v)) to A.
– Upon receiving A’s string (sid, v′), S opens its commitment sending (sid,Openck(v)) to A

and receives.
– S computes Ω = v ⊕ v′.

4. Let i represent the indexes for which Ωi = 1 and j represent the indexes for which Ωj = 0. Upon
receiving the openings and the reordering bits (sid, ρj) from A, S proceeds as follows. If A send

invalid openings, then S sends ⊥ to F̂OT , simulating an abortion and halts; otherwise do the
following:

– For each opening (sid,Openck(Ki,di)), s uses the key Ki,di and the instructions of an honest
sender to check whether the public key pairs are valid (i.e. one of the keys is equal to Ki,di and

the other is equal to Ki,di ⊕Ri). If this check fails, S sends ⊥ to F̂OT , simulating an abortion
and halts. Otherwise it continues to the next step.

– For each reordering bit ρj received by S, it derandomizes the corresponding public key pair by

computing (K̂j,0, K̂j,1) = Kj,0⊕ρ,Kj,1⊕ρ.
– S uses the keys Kj,dj obtained from the extracted commitments to find at least one valid

reordered pair (K̂j,0, K̂j,1). If no such pair is found, S aborts, sending ⊥ to F̂OT and halting.

Otherwise, S obtains c by checking which key in the pair is equal to Kj,dj , i.e. if K̂j,0 = Kj,dj

then c = 0 and if K̂j,1 = Kj,dj then c = 1.

– S sends (sid, receiver, c) to F̂OT , receiving (sid, xc) in response.

5. S samples a random bit xc ← {0, 1}, obtaining a pair (x0, x1) since it already learned xc from
F̂OT . S completes the protocol by performing the following actions:

– Let µ be the number of indexes j, and let j1, ..., jµ denote each of these indexes. For j =
j1, ..., jµ, S generates µ bits xj,0 such that xj1,0 ⊕ · · · ⊕ xjµ,0 = x0 and µ bits xj,1 such that
xj1,1 ⊕ · · · ⊕ xjµ,1 = x1.

– For j = j1, ..., jµ, S encrypts xj,0 under public key K̂j,0 and encrypts xj,1 under public key

K̂j,1 by computing ctj,0 = Enc(K̂j,0, xj,0; rj,0) and ctj,1 = Enc(K̂j,1, xj,1; rj,1), respectively.
– S sends all ciphertexts to A as (sid, (ctj1,0, ctj1,1), . . . , (ctjµ,0, ctjµ,1)).

Lemma 2. (Computational security for S) Let π denote Protocol 2, for every PPT static malicious
adversary A that corrupts only R and every PPT environment Z, the following holds under Assump-
tion 1:

EXECπ,A,Z
c
≈ IDEALF̂OT ,S,Z

Proof. The only differences in the behavior of S and a real honest S following the protocol lie in that S
may halt if the public key pairs related to the unopened commitments are invalid and that S generates
a random xc. In this proof we will show that this deviations from the real protocol are indistinguishable
from a real execution.

First, notice that the simulator only halts in the coin tossing phase and in the verification phase if
A is able to break the commitment scheme’s binding property and send invalid openings, which A is
able to do with at most negligible probability.
S may halt when extracting the choice bit c if all the reordered public key pairs (K̂j,0, K̂j,1) related

to the unopened commitments are invalid (i.e. neither of the public keys corresponds to the unopened
commitment). Let µ be the number of indexes j for which Ωj = 0. In order to show that all the

reordered public key pairs (K̂j,0, K̂j,1) are invalid with at most negligible probability, we will first show
that µ ≥ ω

2 − η with overwhelming probability for any constant η > 0 and ω sufficiently large, where
|Ω| = ω. Let Xi be Bernoulli trials that represent the outcome Ωi of each bit of the coin tossing
for i = 1, . . . , ω and let X =

∑ω
i=1Xi. It is clear that the expected value of X is E[X] = ω

2 . For



a deviation η in the expected value of X, the Chernoff bounds then implies that µ ≥ ω
2 − η with

overwhelming probability. But note that each invalid pair of keys is detected with probability 1
2 during

the commitment opening. Therefore the probability that ω
2 − η or more reordered public key pairs

(K̂j,0, K̂j,1) related to the unopened commitments are all invalid and still the protocol is not aborted
due to the detection of some invalid pair is at most (1/2)

ω
2−η. Hence S halts with at most negligible

probability.

The remaining deviation in S’s procedure consists in sampling a random xc ← {0, 1} in order to
obtain a pair of bits (x0, x1) with respect to (xc, xc). S then uses the uniformly distributed bit as
an input to generate the ciphertexts in the last message from S to A. On the other hand, in a real
execution an honest S knows both messages x0 and x1 and generates ciphertexts with respect to them.
However, since at least one of the public keys used to encrypt the bits xj1,d ⊕ · · · ⊕ xjµ,d = xd is

a random matrix 7, it is not possible to distinguish the ciphertexts ctj1,d, . . . , ctjµ,d generated by S
from the equivalent ciphertexts generated in the real execution without breaking Assumption 1. Hence,
the last message sent by S is computationally indistinguishable from the equivalent message of a real
execution.

5 Conclusion

We introduce the first stand alone and universally composable oblivious transfer protocols based on a
LPN style assumption (i.e. Alekhnovich’s Average-Nearest codeword assumption). These results im-
prove over previous OT protocols based on coding theory by requiring weaker assumptions. Moreover,
our protocols provide a new building block for complex LPN based cryptographic schemes, specially
the secure computation protocol of [30]. We leave open the questions of obtaining OT protocols secure
against adaptive adversaries under the LPN assumption and its variants, as well as improving on the
efficiency of our constructions. Building other cryptographic schemes, such as universally composable
commitments, based on these assumptions is also an interesting open problem.
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A Definitions

In this section we present basic definitions used throughout the paper.



A.1 Public-Key Encryption Schemes

A public-key encryption scheme (PKE) is defined as follows:

Definition 1 (Public-Key Encryption). A public-key encryption scheme is a triplet of algorithms
Gen, Enc, Dec. Gen is a probabilistic polynomial-time key generation algorithm which takes as input
a security parameter 1n and outputs a public-key pk and a secret-key sk. The public-key specifies
the message space M and the ciphertext space C. Enc is a (possibly) probabilistic polynomial-time
encryption algorithm which receives as input a public-key pk, a message m ∈ M and random coins r,
and outputs a ciphertext ct ∈ C. We write Enc(pk,m; r) to indicate explicitly that the random coins r are
used and Enc(pk,m) if fresh random coins are used. Dec is a deterministic polynomial-time decryption
algorithm which takes as input a secret-key sk and a ciphertext ct, and outputs either a message m ∈M
or an error symbol ⊥. For any pair of public and secret-keys generated by Gen and any message m ∈M
it holds that Dec(sk,Enc(pk,m; r)) = m with overwhelming probability over the randomness used by Gen
and the random coins r used by Enc.

A standard security notion for public-key encryption is indistinguishability against chosen-plaintext
attacks (IND-CPA) [25] which is defined below using a game approach as in [28].

Definition 2 (IND-CPA security). To a two-stage adversary A = (A1,A2) against PKE we asso-
ciate the following experiment.

ExpCPAPKE,A (n):
(pk, sk)← Gen(1n)
(m0,m1, state)← A1(pk) s.t. |m0| = |m1|
b← {0, 1}
ct∗ ← Enc(pk,mb)
b′ ← A2(ct∗, state)
If b = b′ return 1, else return 0.

We define the advantage of A in the experiment as

AdvCPAPKE,A (n) =

∣∣∣∣Pr
(
ExpCPAPKE,A (n) = 1

)
− 1

2

∣∣∣∣
We say that PKE is indistinguishable against chosen-plaintext attacks (IND-CPA) if for all proba-

bilistic polynomial-time (PPT) adversaries A = (A1,A2) the advantage of A in the above experiment
is a negligible function of n.

A.2 Oblivious Transfer Protocols and Stand Alone Security

An oblivious transfer (OT) protocol is a protocol executed between two parties: the sender S and the
receiver R. S has two input bits, x0 and x1, and R has a choice bit c as input. In the end of the
protocol R should learn xc, but not xc; while S should learn nothing.

In the stand alone case, only one instance of the protocol is executed at a time. The stand alone se-
curity of an oblivious transfer protocol can be captured as follows (this is the definition of [33] adapted
to protocols with more than two messages). Let n be the security parameter. Let S and R be proba-

bilistic polynomial-time (PPT) Turing machines. Let V iewS̃(S̃(z),R(c)) and V iewR̃(S(x0, x1), R̃(z))
be the views of dishonest S and R, respectively, which contains their inputs z, all local computations,
and messages exchanged.

Definition 3 (Security of OT Protocols). A protocol [S,R](x0, x1; c) securely implements oblivi-
ous transfer, if its execution satisfy the following properties.



Completeness: When both parties are honest, R outputs xc while S has no output.

Security for S: For every PPT adversary R̃, every input z, and a (sufficiently long) random tape
r chosen at random, there exists a choice bit c such that for xc ∈ {0, 1} the distribution (taken over S’s
randomness) of runs of R̃(z) using randomness r with S having input xc and xc = 0 is computationally
indistinguishable from the distribution of runs with S having input xc and xc = 1.

Security for R: For any PPT adversary S̃, any security parameter n and any input z of size
polynomial in n, the view that S̃(z) obtains when R inputs c = 0 is computationally indistinguishable
from that of when R inputs c = 1, denoted:

V iewS̃(S̃(z),R(0))|z
c
≈ V iewS̃(S̃(z),R(1))|z.

Adversarial Models A protocol is said to be secure against honest-but-curious parties, if the previous
definition holds in the case S and R follow the protocol. If the previous definitions hold even if one
of the parties deviates from the protocol, it is said to be secure against malicious parties (or active
secure).


