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Abstract. We construct a signature scheme that is proved secure, with-
out random oracles, under the strong RSA assumption. Unlike other ef-
ficient strong-RSA based schemes, the new scheme does not generate
large prime numbers during signing. The public key size and signature
size are competitive with other strong RSA schemes, but verification
is less efficient. The new scheme adapts the prefix signing technique of
Hohenberger and Waters (CRYPTO 2009) to work without generating
primes.
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1 Introduction

Digital signatures are amongst the most widely deployed cryptographic prim-
itives, with several efficient, standardized schemes that are implemented and
used in common functionalities like HTTPS. Theoretical constructions study
the extent to which digital signatures can be proved secure under mild hardness
assumptions, like the existence of one-way functions, giving us good evidence for
the possibility of constructing secure schemes.

As is often the case with provable security, however, the proved-secure schemes
with the best security guarantees are not nearly as efficient as the (unbroken)
schemes that are used in practice, where applications require fast signing and
verification along with short public-keys and short signatures. The best provable
security evidence (when it is available) for practical schemes comes from security
proofs that use the random oracle model [3], where one models a hash function
as a random function. Of course, in practice we use a non-random function like
SHA-256, a reality that leads some theoretical limitations of these results [7,
12]. From an assurance standpoint it is desirable to have security proofs without
random oracles in order to lessen the possibility that a proved-secure scheme will
be broken when implemented. From a theoretical standpoint it is interesting to
know what is achievable without the random oracle.

Our contribution. In this paper we continue a line of work on designing
efficient signature schemes that are proved secure, without a random oracle,
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under the strong RSA assumption [2]. Unlike other such schemes, ours does
not need to generate large prime numbers during signing and avoids this by
embedding the strong RSA problem into the scheme in a different way.

Recall that the strong RSA problem requires an adversary, on input (N, y)
where N = pq for large random primes p, q, and y ∈ Z∗N is random, to compute
(e, x) satisfying xe = y mod N and e > 1. The structure of the problem suggests
a natural approach for embedding it into digital signatures, where the public key
is N and a signature will consist of (e, x), where e is computed at signing time
and x is an e-th root of a value y that depends on the public key and the
message. In order to apply known techniques that prevent an adversary from
assembling several signatures into a new signature, the e that is generated is
typically required to be a large prime or a product of large primes.

Our construction instead works with e set to be a product of several com-
posite numbers so that the likelihood of one of them being divisible by a large
prime factor is large. In order to avoid making e extremely large, we adapt
techniques from prior work, including the “prefix signing” of Hohenberger and
Waters [20] and analysis techniques for dealing with composite numbers in RSA
signatures due to Gennaro, Halevi, and Rabin [15]. A sketch of our approach
and the techniques we use is given below in the next sub-section.

It is desirable to avoid prime generation in signing because it is typically an
expensive operation and is a step which is not intrinsic for the signing algorithm.
While our scheme does this with a relatively simple signing procedure and with
public key and signature sizes competitive with prior schemes, it has a much
slower verification algorithm. Like all other signature schemes that do not use
random oracles in their security proofs, our construction is not competitive with
practical schemes and we do not recommend it for consideration in applications.
Instead, we aim to have a conceptual contribution towards the goal of practical
schemes from conservative hardness assumptions without random oracles.

In order to more precisely describe our contribution, we first need to recall
some prior work.

Standard Model RSA Signatures. We focus on signatures whose security
is based on the (strong) RSA problem without a random oracle. While there
exists a number of different schemes [11, 15, 23, 24, 13, 6, 22, 19, 20, 8, 18, 5], they
all have in common that the signing algorithm has to generate one or more
primes (of some large size). The prime generation can either be deterministic
(via some hash function h from messages to primes) or according to the uniform
distribution. In both cases the prime generation remains an expensive step whose
elimination is desirable.

Concretely, the strong-RSA based signature schemes from [11, 13, 19, 23, 24,
6] compute a signature on message m as σ(m) = (H(m)1/e mod N, e), where
e is a random prime and H is some (algebraic) hash function that depends on
the specific scheme; the (weakly secure) scheme by Gennaro et al. [15] defines
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σ(m) = g1/h(m) mod N where h is a hash function that hashes into primes.4

The signature scheme by Hohenberger and Waters [20] as well as the one by
Hofheinz et al. [18] are based on the (weaker) RSA assumption and define σ(m) =
g1/

∏n
i=1 hi(m) mod N , where hi are independent hash functions that hash into

primes. Designing a standard-model signature scheme whose signing algorithm
does not rely on the generation of prime numbers is an open problem explicitly
mentioned in [18].

1.1 Our contributions

Our new scheme is relatively simple, so we describe it right away. Its public key
consists of N = pq where p and q are large safe primes5, a number h ∈ Z∗N , and
a key of a pseudorandom function FK(·). For the time being, we assume that
FK(·) takes variable-length inputs, and always outputs odd numbers of some
given length. Signatures on a message m ∈ {0, 1}` are defined via

Sign(m) = h1/e mod N, where e =
∏̀
i=1

FK(m[1...i]) ·
d∏
i=1

FK(m ‖ i). (1)

Here m[1..i] is the i-bit prefix of m, d is a parameter that factors into the con-
crete security, and m ‖ i means m with an encoding of the number i appended.
(Signatures can be computed using the secret key, the factorization of N = pq.)
We stress that we are using the outputs of the FK(·), which are random odd
numbers that are likely to be composite. This is the main difficulty in proving
security. Theorem 5 shows that this scheme achieves a type of weak security
under the strong RSA assumption in the standard model. Full security (unforge-
ability against chosen-message attack) can be achieved by adding a chameleon
hash function - see [21] or the full version of [20].

Intuition. Let us sketch how our scheme adapts and differs from prior proof
techniques. The notion of weak security for signature schemes means that the
adversary gets only one parallel signing query on chosen messages before seeing
the public key. Then it is given the public key, along with the requested signa-
tures, and must generate a signature on a new message m̂. See the next section
for a formal definition, via the game wCMA.

We start with a very high level explanation of why all of the prefixes of m
are processed using FK and multiplied together. Consider a rooted full binary
tree of depth `, with all nodes assigned a label from {0, 1}≤` according to the
left/right steps to that node from the root. The prefixes of a message are exactly
the labels on the nodes encountered on the root-to-message path.

Then we can see the requested messages from the adversary’s parallel signing
query as leaves in the tree, and the union of all root-to-message paths is a subtree.

4 For GHR signatures, the weaker condition collision intractability is sufficient for h.
However, the only known way to instantiate h in the standard model is to hash into
primes [22, 10, 15].

5 A safe prime is an odd prime number p such that p′ = (p− 1)/2 is also prime.
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Now for any message m̂ not in this subtree, the root-to-m̂ path must have some
first node that is not in the subtree. In fact, we can show that all paths to
messages not in the subtree must pass through one of a small number of “exit
nodes”.

The Hohenberger-Waters signature scheme was designed to take advantage
of this structure by guessing which exit node would be used by the message on
which the adversary forges a message. If the guess is correct, then, using hash
functions that output only primes, they can arrange to program in an instance
of the (non-strong) RSA problem. Since the number of exit nodes is polynomial,
this guess is correct with non-negligible probability, resulting in an acceptable
loss in the success probability during the reduction.

We also exploit this structure, but instead we do not guess which exit node
will be used. Instead, we arrange so that we can solve the strong RSA problem
no matter which exit node is used by the adversary during forging. Examining
the proof reveals that this amounts to hoping that several (composite) numbers
output by FK(·) on different inputs will all have large prime factors (i.e, they
are non-smooth). A naive analysis of this technique in which one hopes that
with overwhelming probability all exit nodes are non-smooth gives very bad
parameters. So instead of hoping that every exit node helps us solve the problem
with overwhelming probability, we show that it is enough for each exit node
to help us (i.e., have a large prime factor) with only constant probability. We
can show that this is in fact enough, because when a node does not help, we
can discard it and look at both its children, recursively repeating this process.
Analyzing this behavior is the main difficulty in our proof.

While the idea of using the fact that a number x is not α-smooth is not new
in cryptography (see below for related work), it is clear that the straightfor-
ward approach of requiring x to be α-smooth with negligible probability would
normally result in very bad protocol parameters since the gap between x and α
would have to be too big. Our scheme derives its advantage because the reduction
can tolerate the random numbers having large prime factors with only constant
probability via the recursive tree searching, allowing us to save in parameters
(i.e. use smaller numbers), at the expense of the d extra evaluations and multi-
plications. Consider the set of message queried by the adversary and the subtree
formed by all their root-to-message paths. The central idea of the security proof
is that for any message m̂ not in this subtree (i.e., all the messages for which
a forgery would be acceptable), there should be at least one random number in
m̂’s root-to-message path which is not in the subtree of queried messages and
has a large prime factor. If all the numbers associated to the exit nodes were
such that they had a large prime factor, the proof would be done. But we only
require the random numbers to have a large prime factor with constant proba-
bility, thus for all exit nodes which do not have a large prime factor, we need
to analyze both of its children, and follow the same procedure recursively for
the children. Our analysis of this recursive tree searching shows that with over-
whelming probability all message m̂ not in the subtree of queried messages will
have at least one random number in m̂’s root-to-message path which is not in the
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subtree and has a large prime factor. The d extra evaluations are due to the exit
nodes close to the bottom of the tree. After establishing this fact, the analysis
proceeds to show that the existence of this large prime factor can be used to
extract solutions to the strong RSA problem from a forged signature. Note that
while the Hohenberger-Waters signature scheme is based on the (weaker) RSA
assumption, we need to base our scheme on the strong RSA assumption because
we cannot simply guess the exit node and program the RSA instance there.

1.2 Efficiency

The public key contains the modulus N , h ∈ Z∗N , and a key of a PRF. Recall the
definition of a signature from Equation (1). The cost of computing a signature
σ(m) is dominated by one full exponentiation modulo N to compute h1/e. While
signing is quite efficient, the cost of signature verification is substantially higher.
If the PRF outputs numbers between 1 and 2n−1, the verification has to perform
one modular exponentiation of an exponent e which is of an n(`+d) bit number.
(Note that verification can’t reduce e modulo ϕ(N) since that value is only
contained in the secret key.) Our security analysis of Theorem 5 and Section 4
give an upper bound in the numbers `, d, and n such that our system is secure.
Concretely, for 80 bits security (and assuming that the Dickmann function, ρ(u),
is a good approximation for the probability of a random number between 1 and
x being x1/u-smooth) we can have ` = 160, n = 200 and d = 80, in which case
verification has to perform one exponentiation modulo N with an exponent of
size 200(160+80) = 48000 bits. This analysis is for the weakly secure scheme. The
fully secure scheme adds one Chameleon Hash and therefore one exponentiation
during signing and verification.

Overall, our new signature scheme offers fast and simple signing combined
with a small public key, but has relatively slow verification. More importantly, it
is the first scheme that does not need to generate primes or run primality tests
during the signing process. We believe that this departure from prime generation
dependency is a possible direction for future improvements in the quest for more
practical signature schemes which are provable secure in the standard model and
can also be useful in other contexts.

1.3 Related Work

The key idea that large random numbers are somewhat likely to have large prime
factors and that large random numbers can replace large prime numbers are not
new in cryptography. In 1999, Gennaro, Halevi, and Rabin [15], in the process
of proving the security of their signature scheme, analyzed the probability that
a specific random number is smooth and then showed that if such number is
non-smooth then the probability that it divides the product (of a polynomial
number) of random numbers is negligible, thus establishing an essential step of
the security proof of their signature scheme. We adapt their analysis technique
in order to extract solutions to the strong RSA problem in our reduction.
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Subsequently, in the context of elliptic-curve signatures, Coron, Handschuh
and Naccache [9] avoided point counting (i.e., the need of the participants to
know the number of points on the curve and a big factor of it) by first us-
ing curves over larger underlying fields. As in our case, a naive analysis of the
smoothness property, i.e., requiring the number of curve points to be smooth
with negligible probability, would result in very bad parameters for the proto-
col. Hence the authors only increased the size of the underlying field such that the
probability that the curve is smooth is low. Next, they iterated the protocol over
many independent random curves in order to guarantee that, with overwhelm-
ing probability, at least one curve is non-smooth. Hence their modified signature
scheme for avoiding point counting consists of many parallel instances of the
original signature scheme and therefore had a considerable slowdown around a
factor of 500 [9]. If we used the same approach and signed the messages multi-
ple times with Hohenberger-Waters-style signatures in the hope that for all exit
nodes, in at least one instance its associated number would be non-smooth, then
this would result in a considerable protocol slowdown.

We stress that even though our signatures are syntactically related to the
schemes by Hohenberger and Waters [20] and Gennaro et al. [15], the main
difference is that in our scheme the hash functions hi (instantiated via a PRF
FK) do not output primes.

2 Preliminaries

Notation. When convenient, we identify a vector with the set of its entries, i.e.
a vector m with Q entries will be identified with {m[1], . . . ,m[Q]}. We denote
by x←$X the action of selecting a random element of a set X and calling it x.
Most of our security definitions and proofs will use code-based games in the style
of Bellare and Rogaway [4]. These games are algorithms that start by running an
Initialize procedure, if present, and giving the output to the adversary. Then
the adversary queries the oracles provided by the games, and finally halts, with
its output becoming the input to Finalize. The game output is the output of
Finalize. We denote by GA the event that G outputs true when running with
A. In the code, all boolean flags are implicitly initialized to false and all tables
are initially populated with ⊥.

Signature schemes. A signature scheme Π = (KeyGen,Sign,Verify) consists
of three algorithms that satisfy the following syntax requirements. Algorithm
KeyGen takes the security parameter λ as input and outputs a public/secret key
pair, denoted (pk , sk). Sign takes as input a secret key sk , a message m ∈ {0, 1}`,
and outputs a signature σ or ⊥ (our security definitions will imply that it should
only output ⊥ with very small probability). Verify takes as input a public key
pk , a message m, and a signature σ and outputs accept or reject. We require
that, for all (pk , sk) output by KeyGen(1λ), all messages m ∈ {0, 1}`, and all
σ 6= ⊥ output by Sign(sk ,m), Verify(pk ,m, σ) accepts.
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proc Initialize

M ← ∅
(pk , sk)←$ KeyGen(1λ)
Return pk

proc Sign(m)

M ←M ∪ {m}
σ←$ Sign(sk ,m)
If σ = ⊥ then Win← true
Return σ

proc Finalize(m̂, σ̂)

If Win then Return true
If m̂ ∈M then Return false
Return Verify(pk , m̂, σ̂) = 1

proc Initialize

(pk , sk)←$ KeyGen(1λ)

Return 1λ

proc Sign(m)

For i = 1, . . . , |m| do
σ[i]←$ Sign(sk ,m[i])
If σ[i] = ⊥ then Win← true

Return (pk ,σ)

proc Finalize(m̂, σ̂)

If Win then Return true
If m̂ ∈m then Return false
Return Verify(pk , m̂, σ̂) = 1

proc Initialize

K←$ {0, 1}λ
b←$ {0, 1}
Return 1λ

proc Fn(x)

If b = 1
T [x]← FK(x)

If (b = 0) ∧ (T [x] = ⊥)
T [x]←$ {0, 1}n

Return T [x]

proc Finalize(̂b)

Return (̂b = b)

Fig. 1. Games CMA (left), wCMA (middle), and PRF (right). In wCMA the adversary
is only allowed one query to Sign.

Security notions for signature schemes. We will target existential un-
forgeability under chosen message attacks. We define security using the game
CMA in Fig. 1. For a signature scheme Π = (KeyGen,Sign,Verify) and an adver-
sary A, define the CMA advantage of A to be Advcma

Π,A(λ) = Pr[CMAA]. Note
that, in a slight departure from the standard definition, the adversary wins when
the signature scheme outputs ⊥.

While existential unforgeability under chosen message attacks is our ulti-
mate target, we will mostly deal with an intermediate notion called existential
unforgeability under weak chosen message attacks, which is defined via the game
wCMA in Fig. 1. In this game, the adversary is only allowed one Sign query,
which is issued before the adversary sees the public key. We define the wCMA
advantage of A to be Advwcma

Π,A (λ) = Pr[wCMAA].

Chameleon hash functions. A hash function HF = (K,HE) is a tuple of
polynomial-time algorithms. Algorithm K takes the security parameter λ as input
and outputs a key K. The hash evaluation algorithm HE takes a key K and some
input x and computes y ← HE(K,x). A collision-resistance adversary H, given
K ← K(1λ) as input, outputs (x, x′). The adversary advantage, Advcr

HF,H(λ), is
given by the probability that the outputted (x, x′) satisfy (x 6= x′)∧(HE(K,x) =
HE(K,x′)). A chameleon hash [21] is a collision-resistant hash function with
additional properties.

– The hash evaluation algorithm HE takes a pair consisting of a message m
and randomness r as input.

– The algorithm K, in addition to K, also generates a secret trapdoor informa-
tion, HT . There should be an efficient algorithm that when given messages
m1,m2, randomness r1 andHT as input, finds r2 such that HE(K, (m1, r1)) =
HE(K, (m2, r2)).
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– All the messages m should induce the same probability distribution on the
hash output for r chosen uniformly at random.

Fact 1: There is a generic way to transform an wCMA secure signature
scheme into an CMA secure signature scheme using a chameleon hash [21, 20].

Fact 2: There is a construction of a chameleon hash based on the RSA
assumption [21, 20].

Pseudorandom functions. We define pseudorandom function security using
the game PRF in Fig. 1. For a function family F with outputs of length n
and an adversary C, we define the PRF advantage of C to be Advprf

F,C(λ) =

2 Pr[PRFC ]− 1.

Strong RSA Assumption. An RSA parameter generator is an algorithm that,
outputs two random, equal length safe primes (p, q) (a safe prime is a prime p
such that p′ = (p − 1)/2 is also prime). Let RSAGen(1λ) be an RSA parameter
generator. We define the advantage of an adversary C against the strong RSA
assumption with RSAGen [2, 14], Advsrsa

RSAGen,C(λ), as the probability that C given

(N, y), where (p, q) ← RSAGen(1λ) and N = pq and y←$ Z∗N as input, returns
(e, x) such that e > 1 and xe = y mod N .

Facts from number theory. Let α be a positive integer. An integer x is
called α-smooth if all prime factors of x are less than or equal to α. We will
denote by ε(α, n) the probability that a random number between 0 and 2n − 1
is α-smooth. Define the function

Lx[a] = exp
(

(a+ o(1))
√

log x log log x
)
.

The probability that a random integer between one and x is Lx[a]-smooth is
Lx
[−1
2a

]
(see [10]). We will also use the following lemma from [17].

Lemma 1 Given x, y ∈ Z∗N and a, b ∈ Z such that xa = yb, one can efficiently

compute z ∈ Z∗N such that z = y
gcd(a,b)

a .

Strings. We will write {0, 1}≤` for ∪`i=0{0, 1}i. For a string x ∈ {0, 1}≤` we
write Pref(x) for the set of all prefixes of x, including the empty string and x.
We extend this notation to prefixes of sets in the obvious way.

The following definition formalizes the notion of “exit nodes” from the intro-
duction.

Definition 2 Let M ⊆ {0, 1}` be non-empty. A minimal non-prefix of M is a
string x ∈ {0, 1}≤` such that x /∈ Pref(M) but x′ ∈ Pref(M), where x′ is x
with the last bit deleted. We denote the set of minimal non-prefixes of M by
MNP(M).

Note that the empty string is never in MNP(M) because it is always in Pref(M).
The following lemma is implicit in [20].

Lemma 3 Let M ⊆ {0, 1}` be non-empty. Then we have:
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– For all i = 1, . . . , `, |MNP(M) ∩ {0, 1}i| ≤ |M |, so |MNP(M)| ≤ `|M |.
Moreover, MNP(M) can be computed in time linear in `|M |.

– For any y /∈M , Pref(y) ∩MNP(M) consists of exactly one string.

Chernoff bound. We will use the following standard multiplicative Chernoff
bound.

Lemma 4 Let Y1, . . . , Y` be independent Bernoulli random variables such that
Pr[Yi = 1] = ε for all i, and let Y = Y1 + · · ·Y`. Then for all δ > 0,

Pr[Y > (1 + δ)ε`] <

(
eδ

(1 + δ)1+δ

)ε`
.

3 Signature Scheme

The signature scheme works as follows. Let λ be the security parameter and let
n = n(λ), ` = `(λ) and d = d(λ) be functions of the security parameter. The
scheme signs messages from {0, 1}`, but this can be extended using a collision
resistant hash function.

Fix an RSA parameter generator RSAGen and a function family F that maps
{0, 1}≤`′ to odd numbers between 0 and 2n − 1 (i.e., bitstrings with the last bit
set), where `′ = `+ dlog de. We associate with each message m ∈ {0, 1}` a set of
strings S(m) ⊆ {0, 1}≤`′ given by

S(m) = Pref(m) ∪ {m ‖ i : i ∈ [d]}. (2)

That is, S(m) consists of all of the prefixes of m, including the empty string and
m itself, along with d strings that are formed by appending to m (an encoding
of) an integer between 1 and d.

KeyGen(1n): Run (p, q)←$ RSAGen(1λ), then set N = pq. Select h←$ Z∗N and a
key K←$ {0, 1}λ for the function family F . The public key is pk = (N,h,K)
and the secret key is sk = (pk , p, q).

Sign(sk,m): Compute the set S(m). For each s ∈ S(m), let es ← FK(s) (recall
that F outputs odd numbers), and set e ←

∏
s∈S(m) es. If e is not coprime

with φ(N), then output ⊥. Otherwise, solve the equation

σ = h1/e mod N,

for σ using the factorization of N . Then output the signature σ. Note that
the probability of outputting ⊥ is negligible in the security parameter.

Verify(pk ,m, σ): Compute the set S(m), and for each s ∈ S(m) let es ← FK(s).
Then let e←

∏
s∈S(m) es, and finally accept if

σe = h mod N

and otherwise reject.
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proc Sign(m) // G0, G1

(p, q)←$ RSAGen(1λ) ; N ← pq
p′ ← (p− 1)/2 ; q′ ← (q − 1)/2

h←$ Z∗N ; K←$ {0, 1}λ
pk ← (N,h,K)

If BadSetFK(·)(m) then
bad← true ; Lose← true

For each j = 1, . . . , Q do
ej ←

∏
s∈S(m[j]) FK(s)

If gcd(ej , p
′q′) > 1 then

σ[j]← ⊥
Else σ[j]← h1/ej mod N

Return (pk ,σ)

proc Finalize(m̂, σ̂) // G0,G1,G2

ê←
∏
s∈S(m̂) FK(s)

If gcd(ê, p′q′) > 1 then return false
If Lose then return false

Return ⊥ ∈ σ ∨ ((σ̂ê = h) ∧ (m̂ 6∈m))

proc Sign(m) // G2

(p, q)←$ RSAGen(1λ) ; N ← pq
p′ ← (p− 1)/2 ; q′ ← (q − 1)/2

y←$ Z∗N ; K←$ {0, 1}λ

If BadSetFK(·)(m) then Lose← true
For each j = 1, . . . , Q do
ej ←

∏
s∈S(m[j]) FK(s)

e∗ ←
∏Q
j=1 ej

h← ye
∗

mod N ; pk ← (N,h,K)
For each j = 1, . . . , Q do

If gcd(ej , p
′q′) > 1 then

σ[j]← ⊥
Else

e′j ← e∗/ej ; σ[j]← ye
′
j mod N

Return (pk ,σ)

proc Sign(m) // G3

Choose a random function π
If BadSetπ(m) then

bad← true

proc Finalize(m̂, σ̂) // G3

Return bad

Fig. 2. Games G0,G1,G2,G3 for the proof of Theorem 5. G1 includes the boxed code
and G0 does not. BadSet is described below.

3.1 Security Proof

Theorem 5 Let F be a function family with outputs of length n, RSAGen be a
RSA parameter generator, and Π be the signature scheme associated to F and
RSAGen via the construction above. Let α be such that ε(α, n) ≤ 1/4. Then for
all adversaries A that request Q signatures, there exist efficient adversaries B,C
such that

Advwcma
Π,A (λ) ≤ Advprf

F,C(λ) + Advsrsa
RSAGen,B(λ)

+Q
(
2−2d+1 + 2`3(`+ d)Q/α+ `2(e/4)`

)
.

(3)

where e is the base of the natural logarithm.

Recall that ε(α, n) is the probability that a random number between 0 and
2n − 1 is α-smooth. In Section 4, we will provide example instantitations of the
parameters n, `, and d.

Proof. We use the games in Fig. 2. These games use as subroutine an oracle
algorithm BadSet, which we describe now. Algorithm BadSet takes as input a
vector of messages m ⊆ {0, 1}`, expects access to an oracle O mapping {0, 1}∗
to ZN , and outputs true or false. It works as follows.
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BadSetO(m) first computes e∗ ←
∏
m∈m

∏
t∈S(m)O(t), and then computes

the set MNP(m). Then for each x ∈ MNP(m), it runs the recursive subroutine
CheckO(x). If any of these runs returns true, then BadSet returns true, and
otherwise it returns false.

CheckO(x)

If O(x) - e∗ then
Return false

If |x| = ` then
If O(x ‖ i) - e∗ for some i = 1, . . . , d then

Return false
Else

Return true
If |x| < ` then

Return CheckO(x ‖ 0) ∨ CheckO(x ‖ 1)

We add the rule that, if any call to CheckO(x) results in more than 2`2

recursive calls, then BadSetO(m) halts the computation and returns true.
We now turn to relating the games. Game G0 is just an implementation of

the game wCMA with an extra bad flag that is set when BadSet returns true.
The purpose of this flag will become clear later - it is meant to catch cases where,
after issuing its signing query, the adversary could find a message for which a
forgery is easily created by assembling the given signatures.

Game G1 is the same as G0, except that when the bad flag is set it returns
false to the adversary. We have

Advwcma
Π,A (λ) = Pr[GA

0 ] (4)

Pr[GA
0 ] ≤ Pr[GA

1 ] + Pr[Bad(GA
0 )]. (5)

The inequality follows by the fundamental lemma of game playing since G0 and
G1 are identical-until-bad.

We will bound the summands in (5) individually. We first deal with Pr[GA
1 ].

To this end, we use G2, which employs the now-standard technique of computing
the public key and signatures “backwards” without changing their distribution
- instead, the changes are meant to help the reduction to the SRSA problem.
G2 computes h by choosing a random element of Z∗N , y, and raising it to the
product of all of the exponents used during signing. Since the adversary wins
if this product is not relatively prime to p′q′, the resulting h is a uniformly
random element of Z∗N (or both games output true). Subsequently, signatures
can be computed using y and the exponents using the identity

h1/ej = y(
∏n

i=1 ei)/ej = y
∏

i6=j ei .

We have

Pr[GA
1 ] = Pr[GA

2 ].
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We claim there exists an efficient adversary B such that

Pr[GA
2 ] ≤ Advsrsa

RSAGen,B(λ).

Naturally, B is designed to take advantage of the changes made in G2. B takes as
input (N, y) and attempts to compute some x ∈ Z∗N and e > 1 such that xe = y
mod N . It gives the adversary the security parameter, and then the adversary
queries Sign with a vector of messages m. B then computes

K←$ {0, 1}λ
If BadSetFK(·)(m) then halt with output ⊥
For each j = 1, . . . , Q do

ej ←
∏
s∈S(m[j]) FK(s)

e∗ ←
∏Q
j=1 ej

h← ye
∗

mod N ; pk ← (N,h,K)
For each j = 1, . . . , Q do

If N > gcd(2ej + 1, N) > 1 then σ[j]← ⊥ ; use ej to factor N

Else e′j ← e∗/ej ; σ[j]← ye
′
j mod N

Return (pk ,σ)

B runs A until it outputs (m̂, σ̂). We claim that whenever A would have won
G2, B will solve its SRSA instance. First, if it occurs that ⊥ ∈ σ in G2, then
B will have factored N in the computation above, thus B can use the factoriza-
tion to solve the SRSA problem. Note that gcd(2ej + 1, N) > 1 if and only if
gcd(ej , p

′q′) > 1.
If instead the output of A satisfies σ̂ê = h mod N and m̂ /∈m, then B uses

the output of A to solve the SRSA instance. Now the fact that BadSetFK(·)(m)
must have returned false become relevant: We claim it implies that ê =

∏
s∈S(m̂)

FK(s) does not divide e∗. To see this, let x be the unique prefix of m̂ in MNP(m).
Then CheckFK (x) must have returned false, meaning that, for one of the s ∈
S(m̂), FK(s) did not divide e∗. If one of these did not divide e∗, then certainly
product did not, as desired.

Given that ê does not divide e∗, we can apply Lemma 1. More specifically,
σ̂, ê, y, e∗ satisfy σ̂ê = ye

∗
mod N , and we can compute z ∈ Z∗N satisfying

zê/ gcd(ê,e
∗) = y mod N . We have ê/ gcd(ê, e∗) > 1, so (z, ê/ gcd(ê, e∗)) is a

valid solution to the SRSA instance. This establishes the claim.
Returning to our bound on the advantage of A and now considering Game

G3, substitutions give

Advwcma
Π,A (λ) ≤ Advsrsa

RSAGen,B(λ) + Pr[Bad(GA
0 )] (6)

= Advsrsa
RSAGen,B(λ) + Pr[GA

3 ] + (Pr[Bad(GA
0 )]− Pr[GA

3 ]). (7)

We complete the proof by showing

Pr[Bad(GA
0 )]− Pr[GA

3 ] ≤ Advprf
F,C(λ) (8)
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and

Pr[GA
3 ] ≤ Q

(
2−2d+1 + 2`3(`+ d)Q/α+ `2(e/4)`

)
. (9)

We first prove (8). The adversary C works as follows. It has access to an oracle
Fn which returns “real” evaluations of F or random samples. It runs A on input
1λ. When A queries Sign with a message vector m, C evaluates BadSetO(m),
where all of the calls to O are answered using the Fn oracle provided to C.
Finally, C outputs the value returned by BadSet. It is easy to see that C satisfies
(8).

Proving (9) requires more work. It follows from the next lemma, which will
complete the proof of the theorem.

Lemma 6 Let `′ = ` + dlog de and π be a random function from {0, 1}≤`′ to
{0, 1}n. Let BadSetπ be defined as above. For α > 0, let ε = ε(α, n) be the
probability that a random number between 0 and 2n − 1 is α-smooth. Then for
any m ⊆ {0, 1}` and α, n > 0 such that ε(α, n) ≤ 1/4,

Pr[BadSetπ(m)] ≤ Q
(
2−2d+1 + 2`3(`+ d)Q/α+ `2(e/4)`

)
.

For the proof, we define an alternative, more restrictive version of BadSet,
called SmoothSet. SmoothSet will not be efficiently computable, but we stress
that this is inconsequential for our claims below. SmoothSet takes the same
input and has access to the same oracle. On input m, SmoothSetπ first computes
e∗ ←

∏
m∈m

∏
t∈S(m) π(t), and then computes the set MNP(m). Then it runs

FindPrimesπ(x) for each x ∈ MNP(m), which is the following algorithm that
returns a set of prime numbers.

FindPrimesπ(x)

If ∃ prime p > α s.t. p | π(x) then
Choose one p meeting such criteria and return {p}

If |x| = ` then
If ∃ prime p > α, i ∈ [d] s.t. p | π(x ‖ i) then

Choose one p meeting such criteria and return {p}
Else

Return {⊥}
If |x| < ` then Return FindPrimesπ(x ‖ 0) ∪ FindPrimesπ(x ‖ 1)

We add the rule that, if any call to FindPrimesπ(x) results in more than 2`2

recursive calls, then SmoothSetπ(m) halts the computation and returns true.
SmoothSetπ(m) takes the union of all the sets returned by calls to FindPrimesπ(x).
If ⊥ was returned at any point, or if any of the returned primes divide e∗, then
it returns true. Otherwise, it returns false.

We first argue that whenever BadSetπ(m) returns true due to the halting con-
dition (i.e., if some call Checkπ(x) results in more than 2`2 recursive calls) then
SmoothSetπ(m) also returns true. Note that in such cases either SmoothSetπ(m)
also returns true due to the halting condition or for at least one called value x
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there were less recursive calls in FindPrimesπ(x) than in Checkπ(x). But then
there exists some value u = x ‖ v such that: (i) FindPrimesπ(u) was called and
did not generate any recursive call but (ii) Checkπ(u) generated recursive calls.
(i) implies that FindPrimesπ(u) outputted some prime p > α such that p | π(u)
and (ii) implies that π(u) | e∗. Therefore these two facts together imply that
p | e∗ and so SmoothSetπ(m) returns true by definition.

The other case in which BadSetπ(m) returns true is if there is an x ∈ MNP(m)
and y ∈ {0, 1}`−|x| such that

∀s ∈ Pref(y), π(x ‖ s) | e∗

and
∀i = 1, . . . , d, π(x ‖ y ‖ i) | e∗.

But then it also holds that ∀s ∈ Pref(y) all prime factors of π(x ‖ s) divide e∗ and
∀i = 1, . . . , d all prime factors of π(x ‖ y ‖ i) divide e∗ and hence SmoothSetπ(m)
also returns true. So we have

Pr[BadSetπ(m)] ≤ Pr[SmoothSetπ(m)].

Thus it suffices to bound the latter probability. We recall that SmoothSetπ(m)
returns true if, and only if, for some x ∈ MNP(m), FindPrimesπ(x) returns ⊥ or
performs more than 2`2 recursions or one of the returned primes divides e∗.

We first bound the probability that ⊥ is in the set returned by a call to
FindPrimesπ(x). This will happen if there is an x ∈ MNP(m) and y ∈ {0, 1}`−|x|
such that

∀s ∈ Pref(y), π(x ‖ s) is α-smooth

and
∀i = 1, . . . , d, π(x ‖ y ‖ i) is α-smooth.

For a particular x and y this happens with probability ε|y|+d = ε`−|x|+d. A union
bound over all x and y show that ⊥ is in a set with probability at most∑

x∈MNP(m)

∑
y∈{0,1}`−|x|

ε`−|x|+d =
∑

x∈MNP(m)

2`−|x|ε`−|x|+d

≤
∑̀
i=1

Q2`−iε`−i+d

= Qεd
`−1∑
i=0

(2ε)i < 2Qεd ≤ Q2−2d+1

For the first inequality we used Lemma 3, and for the second we used the as-
sumption that ε ≤ 1/4 and applied the formula for summing a geometric series.

Next we need the following lemma that gives an upper bound on the num-
ber of recursive calls generated by FindPrimesπ(x) (i.e., this lemma bounds the
probability that the halting condition makes SmoothSet return true due to this
x). Note that since each call adds at most one element to the returned set, this
will also bound the size of the returned set.
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Lemma 7 Let π be a random function from {0, 1}∗ to {0, 1}n, α > 0, and
ε = ε(α, n) ≤ 1/4 be the probability that a random number between 0 and 2n − 1
is α-smooth. Then, for any x ∈ MNP(m), the probability that FindPrimesπ(x)
generates more than 2`2 recursive calls is at most `(e/4)`.

Using Lemma 7, it is possible to complete the proof of Lemma 6. Suppose that
FindPrimesπ(x) returns a set of at most 2`2 primes without ever returning ⊥. The
probability that each of the primes p divides e∗ is at most the probability that p
divides one of the Q(`+ d) random factors used in the product defining e∗. This
probability is 1/p < 1/α, because both numbers are random and independent. A
union bound over the factors shows that a given prime divides e∗ with probability
at most Q(`+ d)/α; another union bound over the (at most) 2`2 primes gives a
bound of 2Q`2(`+ d)/α.

Finally, we sum the probability that FindPrimesπ(x) returns ⊥ and the prob-
abilities that FindPrimesπ(x) performs more than 2`2 recursions or one of the re-
turned primes divides e∗ for an x ∈ MNP(m) (there are at most Q` by Lemma 3)
in order to conclude the proof of Lemma 6 and hence of Theorem 5.

Proof of Lemma 7: Fix any x ∈ MNP(m). We bound the number of recursive
calls in the computation of FindPrimesπ(x): Since each call adds at most one
element to the returned set, this will also bound the size of that set. We consider
the number of calls to FindPrimes on inputs of each length. Let Xi the number
of calls on inputs of length i that are generated due to the computation of
FindPrimesπ(x). We will show that with high probability, Xi < 2` for all i,

which gives
∑`
i=1Xi < 2`2.

Pr[X1, . . . , X` ≤ 2`] = 1− Pr[∃Xi : Xi > 2`]

= 1−
∑̀
i=1

Pr[Xi > 2`|X1, . . . , Xi−1 ≤ 2`]

We proceed to prove that for all i

Pr[Xi > 2`|X1, . . . , Xi−1 ≤ 2`] < (e/4)`. (10)

Let j be the length of x. Then we have that X1, . . . , Xj ≤ 1 with probability
1. Now consider the other Xi. Since each call results in at most two calls at the
input with one bit appended, we have Xi ≤ 2Xi−1 for all i = j + 1, . . . , `. We
have that

Pr[Xi > 2`|X1, . . . , Xi−1 ≤ 2`] = Pr

[
Xi > 2`

∣∣∣∣X1, . . . , Xi−2 ≤ 2`
∧ Xi−1 < `

]
+ Pr

[
Xi > 2`

∣∣∣∣X1, . . . , Xi−2 ≤ 2`
∧ ` ≤ Xi−1 ≤ 2`

]
.

In the right-hand side the first probability is 0 because Xi ≤ 2Xi−1 < 2`. We
are left to bound the the second term. Now we use the observation that Xi is the
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sum of `′ = Xi−1 (with 2` ≥ `′ ≥ `) Bernoulli random variables with expectation
2ε, allowing us to apply the Chernoff bound in Lemma 4 giving

Pr[Xi > 2`|X1, . . . , Xi−1 ≤ 2`] = Pr[Xi > 2`|X1, . . . , Xi−1 ≤ 2` ∧ Xi−1 ≥ `]

= Pr

[
Xi >

(
`

ε`′

)
2ε`′

∣∣∣∣X1, . . . , Xi−1 ≤ 2`
∧ Xi−1 ≥ `

]

<

 (e)
`

ε`′−1(
`
ε`′

) `
ε`′

2ε`′

=
e2`−2ε`

′(
`
ε`′

)2`
=
e2`−2`(ε`

′/`)(
`
ε`′

)2`
where we used the fact that `

ε`′ > 1 for ε ≤ 1/4 in order to apply the Chernoff

bound. Now letting β = ε`′

`

e2`−2`(ε`
′/`)(

`
ε`′

)2` =
(
e1−ββ

)2`
We note that 0 < β < 1/2 since 2` ≥ `′ ≥ ` and 0 < ε ≤ 1/4, and that this is an
increasing function of β for the range 0 < β < 1/2. Therefore the worst case is

Pr[Xi > 2`|X1, . . . , Xi−1 ≤ 2`] <

(√
e

2

)2`

=
(e

4

)`
Note that this bound can be made stronger if the upper bound of ε is de-

creased. This proves Inequality 10 and then summing the probabilities over the
l different lengths we conclude the proof of the lemma.

4 Setting the Parameters

From Theorem 5 we have

Advwcma
Π,A (λ) ≤ Advprf

F,C(λ) + Advsrsa
RSAGen,B(λ)

+Q
(
2−2d+1 + 2`3(`+ d)Q/α+ `2(e/4)`

)
.

Now we consider the case in which we want to give concrete upper bounds
on the advantage of any wCMA adversary A. Using the previous equation we
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would like to have

2−λ ≥ Advprf
F,C(λ) + Advsrsa

RSAGen,B(λ) +Q
(
2−2d+1 + 2`3(`+ d)Q/α+ `2(e/4)`

)
= Advprf

F,C(λ) + Advsrsa
RSAGen,B(λ) +Q2−2d+1 + 2Q2`3(`+ d)/α+Q`2(e/4)`

for some security parameter λ. To obtain such bound, we will upper bound each
of the five terms by 2−λ/8. For the first two terms, we only need to setup the
function family F and the RSA parameter generator RSAGen in such a way that
for any polynomial-time adversaries C and B we have

Advprf
F,C(λ) < 2−λ/8

and
Advsrsa

RSAGen,B(λ) < 2−λ/8

For bounding
Q2−2d+1 < 2−λ/8

we only need to set

d >
λ+ 4 + log (Q)

2
Having fixed the value of d, we can now bound

2Q2`3(`+ d)/α < 2−λ/8

by setting
α > 2λ+4Q2`3(`+ d).

Now the value of α will determine the value of n, since we need ε(α, n) ≤ 1/4.
To set the value of n we will use the Dickman function. The Dickman function
ρ(u) is an asymptotical approximation for the probability of a random number
between 1 and x being x1/u-smooth. Assuming that the Dickman function gives
a good approximation in the range of interest, we can use the fact that ρ(2.2) <
0.221 [16] and set n = log(α2.2) (i.e., we are choosing numbers up to α2.2) in
order to obtain ε(α, log(α2.2)) < 1/4 as required by Theorem 5.

Soundness of using Dickman approximation. As mentioned by Bach and
Peralta [1] no discrepancy has been observed between the values predicted by
the ρ function and the real smoothness probabilities, in the range of interest
to algorithm designers. In addition, for small values of u (the case that we are
interested), counts of smooth number have shown that the error of the approx-
imation is as low as 2% even for values of x as low as 1015 (i.e., for numbers
between 1 and 1015, considering 1015/u-smoothness). Tables available in [1].
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