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Abstract. Driven by the cloud-first initiative taken by various governments and companies, it has become a common practice
to outsource spatial data to cloud servers for a wide range of applications such as location-based services and geographic infor-
mation systems. Searchable encryption is a common practice for outsourcing spatial data which enables search over encrypted
data by sacrificing the full security via leaking some information about the queries to the server. However, these inherent leak-
ages could equip the server to learn beyond what is considered in the scheme, in the worst-case allowing it to reconstruct of
the database. Recently, a novel form of database reconstruction attack against such kind of outsourced spatial data was intro-
duced (Markatou and Tamassia, IACR ePrint 2020/284), which is performed using common leakages of searchable encryption
schemes, i.e., access and search pattern leakages. An access pattern leakage is utilized to achieve an order reconstruction at-
tack, whereas both access and search pattern leakages are exploited for the full database reconstruction attack. In this paper,
we propose two novel schemes for outsourcing encrypted spatial data supporting dynamic range search. Our proposed schemes
leverage R+tree to partition the dataset and binary secret sharing to support secure range search. They further provide back-
ward and content privacy and do not leak the access pattern, therefore being resilient against the above mentioned database
reconstruction attacks. The evaluations and results on the real-world dataset demonstrate the practicality of our schemes, due to
(a) the minimal round-trip between the client and server, and (b) the low computation and storage overhead on the client side.

Keywords: searchable encryption, range query, dynamic

1. Introduction

The information retrieval community has been studying geometric range search (GRS) for decades
[1, 24] and it has a wide range of applications in geosciences, location-based services, geographical
information system, geo-medical engineering, and so on. Besides its use in applications assisting in
our daily life activities such as taking an Uber, finding nearby locations on Google Maps or friends on
Facebook, GRS can be used in some significant emerging public health and safety applications. For
instance, with the current COVID-19 outbreak, governments and researchers need to collect information
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(e.g. number of the test taken, confirmed cases, death toll, etc.) in a specific geometric area. The need is
the same in other emergency situations, e.g., a bushfire emergency situation.

Driven by the cloud-first policy of many companies and governments, outsourcing the spatial data to
a cloud server is a common practice around the world. The cloud provides the scalable infrastructure to
handle large datasets and supports on-demand access through its highly available services. Data privacy
is a necessity in such scenarios. Although public cloud providers are trusted in providing their services,
they cannot be fully trusted for data privacy. One obvious solution is to only store encrypted data in
the cloud. However, downloading and decrypting large datasets every time a search or update operation
needs to be performed is completely impractical. Hence, searchable encryption (SE) is considered as a
solution to correctly perform queries (search/update) over outsourced encrypted data.

Searchable Symmetric Encryption (SSE) efficiently enables search over encrypted data at the cost
of revealing some well-defined information to the server, known as the leakage. The most common
SSE leakage functions are access pattern and search pattern. Access pattern leaks all file identifiers that
are matching a search query. In contrast, search pattern leaks the repetition of search queries (i.e., it is
possible to determine if two search tokens correspond to the same query). Exploiting SSE leakages might
enable an adversary (often an honest-but-curious cloud server) to infer information about the database
beyond what is considered in an SSE scheme (e.g. leakage abuse attacks [8, 26]).

Most of the existing SSE schemes that support geometric range search are designed in the static setting
(i.e., updates of the database records after the setup are not possible or come at the cost of re-encryption
and re-upload of the database). Although the dynamic setting provides more flexibility to the schemes
and supports more real-world applications, it introduces more leakages. To capture new leakages in a
dynamic setting, Bost et al. [5] introduced security notions for dynamic SSE, so called forward and
backward privacy. Recently, Kasra-Kermanshahi et al. [18] showed that there might be additional leak-
ages when dealing with geometric data that are not captured by Bost’s forward and backward privacy
models, and introduced a new security notion for dynamic SSE over spatial data (called content privacy)
that hides the access pattern both in search and update operations.

Different cryptographic primitives have been used to support secure range search over geometric data
such as order-preserving encryption (OPE), somewhat/fully homomorphic encryption, Geohash, and
so on [18, 22, 30–32, 34–36]. However, due to the inherent leakages associated with geometric range
search, the majority of them fail to resist the newly developed leakage abuse attacks that target SSE
schemes designed for GRS [23, 27].

1.1. Our Contributions

In this paper, we propose two dynamic searchable symmetric encryption schemes to support geometric
range search, Geo-DRS and Geo-DRS+. The first scheme illustrates a novel approach to support geo-
metric range search using R+tree where more round trips between the client and the server are required
to achieve content privacy (alternatively homomorphic encryption can be used at higher computational
cost). Our Geo-DRS+ scheme provides an efficient dynamic range search by leveraging R+tree and
secret sharing in Z2. Moreover, it uses two non-colluding servers to avoid multiple rounds of client-to-
server interactions. Thus, it has only one round trip between the client and the servers during searches
and updates, with a logarithmic number of communication rounds between the two servers. Geo-DRS+

is efficient and scalable while resilient against Full Database Reconstruction (FDR) and Approximate
Database Reconstruction (ADR) attacks. Our security analysis shows that Geo-DRS+ is backward and
content private.
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It is worth noting that this paper is an extension of our work published in European Symposium
on Research in Computer Security (ESORICS’21) [16]. In this version, several sections are added to
facilitate the understanding of the work presented. Furthermore, we conduct experiments on a real-
world dataset, demonstrating the effectiveness of Geo-DRS+ in practice, and showing the significant
improvement of efficiency by our design compared with state-of-the-art schemes.

1.2. Motivation and Related Works

Order Preserving Encryption (OPE) [2] is one of the most popular approaches to perform range search
over encrypted data due to its efficiency. However, several studies have shown that it is possible to per-
form inference attacks on one-dimensional datasets using OPE leakages [11, 17, 19, 20]. The search and
access pattern leakages are the most common leakages used in performing inference attacks. For exam-
ple, Naveed et al. [26] used frequency analysis to perform sorting and cumulative attack. Later, Durak
et al. [8] discovered two more types of attacks (Inter-column correlation-based attacks and Inter+Intra-
column correlation-based attack) using OPE leakages that have not been considered by Naveed’s work.
Grubbs et al. [11] designed a leakage abuse attack which takes advantages of both frequency and or-
der leakage of OPE. Grubbs’s attack is faster, with a higher recovery rate in comparison with Naveed’s
cumulative attack. Furthermore, a passive adversary is also able to perform FDR without requiring aux-
iliary information, as discussed by Kellaris et al. [17].

The above discussed attacks mainly focused on one-dimensional data. Recently, Pan et al. [27] in-
vestigated data inference attacks against multi-dimensional OPE-encrypted databases. They designed a
greedy and polynomial-time algorithm with approximation guarantees. The FDR attacks for geometric
datasets were introduced recently by Markatou and Tamassia [23]. They utilized access pattern leakage
to reconstruct the horizontal and vertical order of the points, and both access and search pattern leakages
to recover the coordinates of the points.

Several studies have begun to support range search over encrypted spatial data [18, 22, 30–32, 34–
36]. For example, Wang et al. [30–32] proposed several constructions for geometric range search using
SSW1 encryption [29], which is a pairing-based public-key encryption (PBKE). The main idea of these
works is to enumerate all possible points and then check whether they are in the queried range. Due
to the use of SSW, it is necessary to perform a pairing computation for each database point. Similarly,
bilinear pairing operations are used by Zhu et al.[36] to support range search for location-based services.
Both Xu et al. [34] and Zheng et al. [35] proposed an OPE-based scheme which utilizes R-tree for
range search over spatial data. Luo et al. [22] used asymmetric scalar-product-preserving encryption
(ASPE) [33] and a geometric transformation to achieve efficient range search. However, Li et al. [21]
showed that Luo’s scheme has some security flaws and cannot achieve the stated security notion. They
proposed an enhanced version of Luo’s scheme to overcome the security issues. However, both schemes
are designed in a static setting; hence the update (insertion/deletion) of the points in the datasets is
either not possible or requires re-encryption of the entire dataset. Guo et al. [12] proposed a dynamic
searchable encryption scheme for geometric range search called MixGeo. They utilized Geohash and
predicate symmetric searchable encryption to achieve efficient linear search and update. Although, the
scheme supports update of the dataset points, there is no discussion about forward and backward privacy
of the scheme as well as resilience against leakage abuse attacks.

Unlike other existing works in the area of geometric range search, Kasra-Kermanshahi et al. [18]
proposed two constructions which consider forward and backward privacy. Moreover, they have defined

1Shen-Shi-Waters
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Table 1
Table of Notations.

Notation Description
D spatial dataset
N number of objects in D
` bit length of database objects (64 bits)
JxK a secret share of x over Z2

IDi ∈ {0, 1}` `-bit object identifier
m maximum number of objects per leaf node
E encrypted dataset
ST search token
R search results

a new security notion for spatial data named content privacy. Their constructions utilize binary tree and
a special type of additive symmetric homomorphic encryption (ASHE). To the best of our knowledge,
only three of the state-of-the-art symmetric searchable encryption schemes that support geometric range
search are presented in a dynamic setting. Only one of them, Kasra-Kermanshahi et al. [18], considered
forward, backward, and content privacy. However, the constructions are not scalable as the size of the
utilized binary tree grows linearly with the number of grid points in each dimension of the environment.

2. Building Blocks

2.1. Notation

Some of the notations that are used more frequently in the work are given in Table 1.

2.2. Syntax of Dynamic Symmetric Searchable Encryption

In this section, Dynamic Symmetric Searchable Encryption (DSSE) is briefly reviewed. Let DB =
{(indi,Wi) : 1 6 i 6 D} be a database with indi ∈ {0, 1}`,Wi ⊆ {0, 1}∗. Here, indi are document
indices and Wi is a set of keywords matching document indi. We denote the set of keywords in DB with
W = ∪D

i=1 where K = |W|. We define N =
∑D

i=1 |Wi| as the number of document/keyword pairs. We
denote DB(w) = {indi|w ∈ Wi} as the set of documents containing keyword w. The interface between
client and server involves the Setup algorithm and Search and Update protocols [5]:

• Setup(DB, λ) → (EDB,K, σ): The encrypted database EDB, master K, and σ as the client’s state
are output by this algorithm given the security parameter λ and database DB.

• Search (q, σ, EDB) → (ER): Clients and servers interact through this protocol. Given the search
query q by the client, the server searches the encrypted database EDB and outputs the set of the
encrypted matching results, ER.

• Update (K, σ, op, in, EDB) → (EDB′, σ′): The client inputs K, σ, and an operation op with its
input in = (ind,w) (an index and a set of keywords to be modified). The server inputs EDB.
Update outputs the new version of the encrypted database and the updated client’s state.
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2.3. R-tree and R+tree

R-tree was first introduced by Antonin Guttman in 1984 [13], to handle spatial data efficiently. This
data structure is a height-balanced tree-structure with index records in its leaf nodes containing pointers
to data objects. In this paper, we use R+tree [28], a variation of R-tree in which overlapping rectangles
in intermediate nodes are avoided. Moreover, R+trees have better searching performance compared to
R-trees [28].

We briefly review the example from [28] as shown in Figures 1, 2 and 3 to see how a R+tree is formed
(for the sake of simplicity, the values of the bounding boxes (Rect) are not mentioned in this example).

Fig. 1. The sample dataset.

Fig. 2. The rectangles of Figure 1 grouped to form an R+tree.

In R+trees leaf nodes consist of (ID,Rect), where ID is the object identifier and Rect represents
the bounding box where the object is located. That is, Rect = (xmin, xmax, ymin, ymax) which are the
coordinates of the lower left corner and the coordinate of the upper right corner. Non-leaf nodes contain
entries of the form (p,Rect), where p is the pointer to the address of the lower nodes (children nodes)
and Rect covers the rectangles in the lower node’s entries. A R+tree has the following properties:
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Fig. 3. The R+tree built for Figure 2.

• For each entry (p,Rect) in an intermediate node, the corresponding subtree contains a rectangle R
if and only if R is covered by Rect unless R is a rectangle at a leaf node; in which case R must just
overlap with Rect.

• There is no overlap in any two entries in an intermediate node.
• The root has at least two children unless it is a leaf.
• All leaves are at the same level/height.

2.4. Inverted Index

We use the inverted index to facilitate the storage and search of the dataset. For instance, to build the
inverted index of the R+tree shown in Figure 3, we first label the R+tree nodes, where n0 is the root and
n1 to n4 are the leaf nodes from left to right. Then, we store the corresponding values as mentioned in
Section 2.3 for each node as shown in the Table 2.

For the sake of simplicity, the bounding boxes (Rect) are not mentioned in this example.

Table 2
Inverted Index

Node Label Value
n0 (pn1 ,RectA), (pn2 ,RectB), (pn3 ,RectC), (pn4 ,RectP)

n1 (D,RectD), (E,RectE) ,(F,RectF), (G,RectG)

n2 (I,RectI), (J,RectJ) ,(K,RectK)

n3 (L,RectL), (M,RectM) ,(N,RectN)

n4 (G,RectG), (H,RectH)

2.5. Secure Bitwise Comparison

This work uses secure two-party computation based on bitwise secret sharings. An additively secret
sharing of x ∈ Z2 consists of two shares x1 and x2 chosen uniformly at random subject to the constraint
that x = x1 + x2 mod 2. The two shares are distributed to two servers, respectively. We will denote this
secret sharing by JxK. All secret sharing operations are modulo 2 and the modular notation is omitted for
conciseness. Note that modulo 2, addition and subtraction are equivalent. Given secret sharings JxK and
JyK, the two servers can locally compute in a trivial way secret sharings corresponding to z = x + y. This
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operation will be denoted by JzK ← JxK + JyK. It is also trivial to add the constant 1 to a secret sharing,
one of the servers simply adds it locally.

In this work, secure multiplications of secret shared values are performed in a standard way using
pre-distributed multiplications triples [3, 7], which consist of (JaK, JbK, JcK) for uniformly random a and
b, and c = ab. These triples are pre-distributed by the data owner to the two computing servers. In order
to improve the communication costs, a pseudorandom function (PRF) is used to generate the triples: (1)
the data owner sends a key K1 of the PRF to S 1 and a key K2 to S 2; (2) the data owner and S 1 use the
PRF to obtain pseudorandom values a1, b1, c1 ∈ Z2, while the data owner and S 2 use the PRF to obtain
pseudorandom values a2, b2 ∈ Z2; (3) the data owner fixes c2 such that c = ab and transmits the share
c2 to S 2. With this optimization the communication cost for pre-distributing each multiplication triple
is reduced to a single bit.

For performing secure bitwise comparison, we use the same protocol as De Cock et al. [6], which
is a variant of the protocol of Garay et al. [10] using bitwise secret sharings in the field Z2 (a detailed
description of the underlying protocol can be found in Section 4.3.3 of De Hoogh’s PhD thesis [14]).
For `-bits values x and y, the two servers have as inputs secret shares JxiK and JyiK for i ∈ {0, . . . , `− 1},
where x = Σ`−1

i=0 xi2
i and y = Σ`−1

i=0 yi2
i. The protocol GEQ outputs a secret shared value JzK, where z is

equal to 1 if x > y; and equal to 0 otherwise. The protocol, which uses the divide and conquer paradigm,
is presented in Algorithm 1. It outputs the inverse of the output of the protocol LT that outputs a secret
shared value JzK, where z is equal to 1 if x < y; and equal to 0 otherwise. LT uses as a subprotocol
LTEQ, which outputs (JzK, JwK) such that z is equal to 1 if and only if x < y and w is equal to 1 if
and only if x = y. The protocol GEQ has log ` + 1 rounds and needs to perform 3` − log ` − 2 secure
multiplications of values that are secret shared in Z2.

3. Definitions, Security Notions and Model

3.1. Syntax of Our Geometric Dynamic Range Search (Geo-DRS+)

Our geometric dynamic range search (Geo-DRS+) scheme consists of the following algorithms:

(1) Setup(DB): The first step is to generate the shares of the database records to be outsourced to the
servers. This phase is run by the data owner as follows:

• Build.R+tree(DB,m) → (RT ): Given a database DB and the tree parameter m (which deter-
mines the maximum number of the points in each node), this algorithm outputs a height-balanced
R+tree.

• SecretShare(RT ) → (S1,S2): This algorithm gets the R+tree as input and outputs its bitwise
secret shares.

The Setup phase also generates the multiplications triples (that will be needed for the executions of
Protocol GEQ) and the database state δ. S1 is given to the first server and S2 to the second server.

(2) Search(Rectq/S1/S2) is a protocol between a client and the servers. To find the desirable range
query Rectq, the client secret shares the query coordinates with the servers whom run the GEQ
protocol over their stored shares S1/S2 traversing the R+tree jointly to find the minimum bounding
boxes (leaf nodes) that cover the query. The servers output the shares of the result set,R1 andR2.

(3) Update(ni, δ,S1/S2) is a protocol between the data owner and the servers. To insert or delete
an object, the data owner should generate the new shares of the corresponding leaf node. Upon
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Algorithm 1 Comparison Protocols
GEQ(`, Jx`K, . . . , Jx1K, Jy`K, . . . , Jy1K)
Input: `, Jx`K, . . . , Jx1K, Jy`K, . . . , Jy1K
Output: JzK

1: return JzK← 1 + LT(`, Jx`K, . . . , Jx1K, Jy`K, . . . , Jy1K) // z is equal to 1 if x > y; and equal to 0 otherwise

LT(k, JxkK, . . . , Jx1K, JykK, . . . , Jy1K)
Input: k, JxkK, . . . , Jx1K, JykK, . . . , Jy1K
Output: JzK

1: if k = 1 then
2: return JzK← Jy1K + Jy1KJx1K
3: else
4: k′ ← bk/2c
5: (JaK, JbK)← LTEQ(k − k′, JxkK, . . . , Jxk′+1K, JykK, . . . , Jyk′+1K)
6: JcK← LT(k′, Jxk′K, . . . , Jx1K, Jyk′K, . . . , Jy1K)
7: return JzK← JaK + JbKJcK // z is equal to 1 if x < y; and equal to 0 otherwise
8: end if

LTEQ(k, JxkK, . . . , Jx1K, JykK, . . . , Jy1K)
Input: k, JxkK, . . . , Jx1K, JykK, . . . , Jy1K
Output: JzK, JwK

1: if k = 1 then
2: JzK← Jy1K + Jy1KJx1K
3: JwK← 1 + Jx1K + Jy1K
4: return (JzK, JwK)
5: else
6: k′ ← bk/2c
7: (JaK, JbK)← LTEQ(k − k′, JxkK, . . . , Jxk′+1K, JykK, . . . , Jyk′+1K)
8: (JcK, JdK)← LTEQ(k′, Jxk′K, . . . , Jx1K, Jyk′K, . . . , Jy1K)
9: JzK← JaK + JbKJcK

10: JwK← JbKJdK
11: return (JzK, JwK) // z is equal to 1 if and only if x < y and w is equal to 1 if and only if x = y.
12: end if

receiving the shares, the servers update their stored shares S1/S2 by replacing them with the new
shares. At the end, the servers update the dataset state to δ+ 1.

Remark. Note that, in our model we assume that the data owner sets m large enough according to
the size of the environment such that the insertion of new objects would not require node splitting (see
[28] for more details). Thus, to add/delete an object only the corresponding leaf nodes would be updated.
Moreover, even if the number of objects in a leaf node become larger than m, the data owner can proceed
with splitting the corresponding leaf node and updating the encrypted records accordingly.

3.2. Generic Dynamic SSE Leakage Functions

The leakage function L keeps as state the query list Q, i.e., the list of all queries issued so far. The
entries are (t,w) for a search query on keyword w, or (t, op, (w, ind)) for an update query, where t is the
timestamp, w is the search keyword, op ∈ {Add,Del} denoting the operation, and ind is a list of file
identifiers to be updated. According to Bost [5] the general leakage functions associated with dynamic
SSE schemes are the following:



S. Kasra Kermanshahi et al. / Range search on encrypted spatial data with dynamic updates 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• sp(w) = {t : (t,w) ∈ Q} is the search pattern which leaks if two search queries correspond to the
same keyword w.

• UpHist(w) is a history which outputs the list of all updates on keyword w. Each element of this list
is an update query tuple qu = (t, op, (w, ind)).

• TimeDB(w) is the list of all documents matching w, excluding the deleted ones, together with the
timestamp of when they were inserted in the database.

• Updates(w) is the list of timestamps of updates on w.
• DelHist(w) is the deletion history of w, which is the list of timestamps for all deletion operations

together with the timestamp of the inserted entry it removed.

3.3. Range Search Leakage Functions

We denote the leakage function of our Geo-DRS+ scheme by L. That is, the information which each
server is allowed to learn about the dataset and the queries. This leakage function corresponds to the
Setup, Search and Update of Geo-DRS+; L = (LS tp,LS rch,LU pdt).

• Search pattern (s): Similar to most of the existing searchable encryption schemes, our scheme leaks
some information about whether any two queries are generated from the same range search or not. In
our design, the servers learn if the minimum bounding boxes match the minimum bounding boxes of
previous searches. That is, every time a search happens, the client will generate new random secret
shares of the coordinates. So, even if the same search query happens twice or more, the random
secret shares of the coordinates will be different from the point of view of any single server, and
he cannot link the search queries using this part of the protocol. But the servers learns the resulting
minimum bounding boxes and can compare with the respective boxes of previous search queries.

• Number of updates (Nu): The server learns how many updates are performed on the dataset but he
cannot recognize the type of the update (insertion, deletion, modification) and also on which point
the update is performed. Therefore, the update does not leak any information about the dataset and
the search queries.

• Range search size (rs): the server learns which minimum bounding boxes cover the range for each
search query.

• Range update size (ru): the server learns which minimum bounding boxes cover the range for each
update query.

• R+tree structure (R+): The structure of R+tree is leaked to the servers.

Therefore, Geo-DRS+ leakage consists of LS tp(D) = R+, LS rch(r) = (s, rs), and LU pdt(op, IDi) =
(ru,Nu).

3.4. Security Notions and Definitions

Kasra-Kermanshahi et al. [18] introduced a new security notion for spatial data called content pri-
vacy. They formulated a leakage that was not captured in previous definitions such as forward/backward
privacy [4, 5]. In short, there should be no leakage on updated points neither in the search phase nor
during the update. Content privacy and backward privacy (Type-II) have some common properties: both
protect the content and do not leak anything about the documents’ identifiers in the update queries. How-
ever, backward privacy (Type-II) leaks information about the content in the search queries via the access
pattern.
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Backward privacy (Type-II) reveals all of the information contained in Backward privacy (Type-I) 2

and also reveals when all updates over the search keyword happened without their content.

Definition 3.1 (Backward Security with Update Pattern). A L-adaptively-secure SSE scheme is update
pattern revealing backward-secure if, and only if, the search and update leakage functions LS rch, LU pdt

can be written as: LU pdt(op,w, ind) = L′(op,w) and LS rch(w) = L′′(TimeDB(w),Updates(w), sp(w)),
where L′ and L′′ are stateless.

Definition 3.2 (Content Privacy for Spatial Dataset). A L-adaptively-secure SSE scheme is content-
private if, and only if, the search and update leakage functions LS rch, LU pdt can be written as:
LU pdt(op, r, P) = L′(op, r) and LS rch(r) = L′′(r) where L′ and L′′ are stateless. Here, r represents
a range of coordinates and a point identifier is denoted by P.

3.5. Security Model

The security model of the proposed constructions is formulated using two games; REALΣ
A(λ) and

IDEALΣ
A,S(λ), for a security parameter λ. The former is executed using our Geo-DRS+ scheme (denoted

by Σ), whereas the latter is simulated using the leakage of our scheme as defined in Section 3.3. The
leakage is parameterised by a function L = (LS tp,LS rch,LU pdt) , which describes what information is
leaked to the adversary A. If the adversary A cannot distinguish these two games, then we can say that
there is no leakage beyond what is defined in the leakage function. These games can be formally defined
as followed;

• REALΣ
A(λ): On input a dataset chosen by the adversaryA, it outputs the shares of the R+tree nodes

by using Setup(DB) to A. The adversary can repeatedly perform search and update queries. The
game outputs the results generated by running Search(Rectq/S1/S2) and
Update(ni, δ,S1/S2) to A. Eventually, A outputs a bit.

• IDEALΣ
A,S(λ): On input a database chosen by A, it outputs the shares of R+tree nodes to the

adversaryA by using a simulator S(LS tp). Then, it simulates the results for search queries using the
leakage function S(LS rch) and uses S(LU pdt) to simulate the results for update queries. Eventually,
A outputs a bit.

Definition 3.3. The scheme Σ is L-adaptively-secure if for every PPT adversary A, there exists an
efficient simulator S such that |Pr[REALΣ

A(λ) = 1]− Pr[IDEALΣ
A,S(λ) = 1]| 6 negl(λ).

4. Dynamic Secure Range Search on Encrypted Spatial Data

This section first presents the Geo-DRS scheme to address the challenge of secure range search on
spatial data in a dynamic manner. Figure 4 demonstrates the overview of Geo-DRS scheme. This base
scheme imposes a logarithmic number of communication rounds between the client and the server to
perform the search. One possible solution to avoid this communication overhead is to store the R+tree
structure from root to the leaf nodes on the client side and put the rest on the server. However, this is not
desirable as it contradicts the main goal of outsourcing the data and also is not appropriate for resource

2the document identifiers matching the issued search keyword when they were inserted, and the total number aw of updates
over the search keyword
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Fig. 4. The system model of Geo-DRS scheme

Fig. 5. The system model of Geo-DRS+ scheme

constrained devices. Therefore, we design Geo-DRS+, an enhanced version of the Geo-DRS scheme in
which the single-server model of Geo-DRS is replaced with a two non-colluding server model, see Figure
5. This enables us to shift the communication between the client and a server to the communication
between the two non-colluding servers. To enable the servers to perform secure computation over the
outsourced data and achieve backward and content privacy, we utilize binary secret sharing in Geo-
DRS+.

4.1. Geo-DRS Scheme

To explain the ideas underlying our main construction (Geo-DRS+), we first describe the details of
the Geo-DRS scheme in Algorithm 2. This scheme consists of three main algorithms: SETUP, SEARCH,
UPDATE.

• SETUP: The data owner proceeds as follows:

* On input the datasetD, security parameter λ and the tree parameter m, she partitions the environ-
ment and builds a height-balanced R+tree.
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* Encrypt each of the tree nodes and outsource it to the server.

• SEARCH: The protocol is executed between the client and the server as follows:

* Client: Given the desired range query Rectq = ([xLL(q), xUR(q)],
[yLL(q), yUR(q)]), the client generates the search token ST for the tree root and sends it to the
server. Upon receiving the corresponding resultR from the server, he decrypts it to find the next
node in the R+tree and continues this procedure to reach the desirable object.

* Server: Given the encrypted dataset E and the search token ST , it outputs R which contains the
ciphertext of the nodes corresponding to the issued search token.

• UPDATE3: The data owner and the server perform the following protocol:

* Data Owner: Given the update query Qu = IDi, whether it is an insertion or a deletion, they first
perform the SEARCH protocol so that the data owner finds the corresponding leaf node, ni. Then,
the data owner re-encrypts ni and sends the re-encryption to the server.

* Server: The server replaces the corresponding entry for ni with the given value from the data
owner and updates the encrypted dataset E state.

4.2. Geo-DRS+: Optimised Geometric Dynamic Range Search

In our model, we use a R+tree to categorise the data before creating the inverted index. We applied
the technique of De Cock et al. [6] with the secret sharing of [10] in the field Z2 to perform the secure
search. The protocols for the setup, search and update work as follows (Figure 6 illustrates the details of
Geo-DRS+ scheme):

• Setup(D): This algorithm is performed by the data owner that inputs the the spatial dataset D. He
first partitions the environment to build the R+tree. Then he creates bitwise secret sharings of the
inverted index based on each node in the tree, and sends the sets of shares S1 and S2 to S1 and S2,
respectively. He also pre-distributes to the servers the multiplications triples that will be needed for
the executions of the GEQ protocol.4

• Search(Rectq/S1/S2): This protocol is executed by the client and the servers. On an input query
Rectq = ([xLL(q), xUR(q)], [yLL(q), yUR(q)]), the client generates bitwise secret sharings of those
coordinates and send the set of shares ST 1 and ST 2 to the corresponding servers. Given the shares
of the search token and of the inverted index, the servers S1 and S2 jointly perform the search and
return shares of the results, (R1,R2), to the client. Finally, the client reconstructs the results,R.

• Update(ni, δ,S1/S2): This protocol is executed between the data owner and the servers. To up-
date (i.e., insertion/deletion) an object in the outsourced dataset, the data owner should update the
corresponding leaf node. That is, it first updates the object and then generates the new shares of
that leaf node. As the entire entry for the leaf node is getting updated the servers would not learn
which particular object is being updated. To update the leaf node ni, the data owner generates the
corresponding shares U1 and U2 for the servers. Given such shares, the servers update their shares
by replacing them with the new shares. Finally, the servers update the dataset state to δ+ 1.

3It is also possible to use additive homomorphic encryption to perform the update at the server side (e.g. update in [18]), here
we want to show only a basic scenario.

4The data owner can initially distribute some reasonable number of multiplication triples, and once the servers are about to
run out of triples, they can request more triples to the data owner.
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Algorithm 2 Geo-DRS Construction
Setup(λ,D,m)
Input: λ,D,m
Output: E , K
1: The data owner partitions D
2: RT ← R+tree(D,m) // generates a R+tree where each node has m entries, filling up the empty spaces with dummy values
3: Append each partition of size m of IDi ∈ D to the corresponding leaf node
4: Initialize UT ← ∅ indexed by nodes’ Tag

5: Ks, Kt
$←− {0, 1}λ, E ← {}, δ← 1 // state of E

6: for all ni ∈ RT do
7: Ki ← F(Ks, ni) //F is a pseudo-random function (PRF)
8: Tagi ← F(Kt , ni)
9: for j = 1, ...,m do

10: for Rj(ni) ∈ RT do //Rj(ni) is the records associated with a node
11: ei ← EncKi (Rj(ni))
12: UT(Tagi)← ei
13: end for
14: end for
15: end for
16: Append UT to E
17: return E , Ks, Kt // The data owner stores K = (Ks, Kt) and the identifier of the root of RT which is n0, and sends E to the server

Search(Rectq, E)

Input: Rectq = ([xLL(q), xUR(q)], [yLL(q), yUR(q)]), n0, E
Output:R
1: The client starts from the root n0 and performs Sch(n0)
2: ReturnsR as the list of objects which overlap with the queried rectangle

Sch(ni)

1: The client computes Tagi ← F(Kt , ni)
2: Ki ← F(Ks, ni)
3: Send Tagi to the server
4: The server computes ei ← UT(Tagi) and send ei to the client
5: if ni is a leaf node then
6: R = {R j(ni) = (IDo, recto)}o∈{1,...,N}

j=1,...,m ← DecKi (ei)

7: returnR
8: else
9: R = {R j(ni) = (nc, rectc)}c∈{1,...,n}

j=1,...,m ← DecKi (ei)

10: for j = 1, ...,m do
11: // Check if Rectq collides with rectnc

12: if ((yLL(ni) 6 yUR(q) 6 yUR(ni)) OR (yLL(ni) 6 yLL(q) 6 yUR(ni)))
AND
((xLL(ni) 6 xLL(q) 6 xUR(ni)) OR (xLL(ni) 6 xUR(q) 6 xUR(ni))) then

13: Sch(nc)
14: end if
15: end for
16: returnR
17: end if

Update(IDi; E , δ)
Input: IDi; E , δ
Output: E , δ
1: if op = Add then
2: The data owner append IDi to R j(ni)
3: else
4: The data owner replaces IDi with dummy value in R j(ni)
5: end if
6: Tagi ← F(Kt , ni)
7: e′i ← EncKi (Rj(ni)) and send (Tagi, e′i ) to the server
8: The server finds ei ← UT(Tagi) and replace ei with e′i in E
9: δ← δ + 1

10: return E , δ
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Setup(D)

1. The data owner generates the R+tree, RT ← R+tree(D,m)
2. For each ni ∈ RT and for j ∈ {0, ..., ` − 1} (where ` is the bit-length used to represent the
coordinates), the data owner secret shares between S1 and S2 the values (Jx j

LL(ni)K, Jy j
LL(ni)K,

Jx j
UR(ni)K, Jy j,

UR(ni)K). Let S1 denote the shares of S1, and S2 those of S2.
3. The data owner sets the state δ = 0
4. The data owner generates the multiplication triples that are necessary to execute the GEQ protocol
and sends the respective shares of the triples, as well as δ, to S1 and S2.

Search(Rectq; /S1/S2)

1. The client C secret shares the query coordinates (Jx j
LL(q)K, Jy j

LL(q)K, Jx j
UR(q)K, Jy j

UR(q)K) between
the servers S1 and S2.
2. S1 and S2 run the protocol GEQ over the shared query coordinates and R+tree nodes starting
from the root to determine which children need to be searched.
If the following condition hold (the output of comparison is “1”) then S1 and S2 traverse the R+tree
via that node until they reach the leaf node
((yLL(ni) 6 yUR(q) 6 yUR(ni)) OR (yLL(ni) 6 yLL(q) 6 yUR(ni))) AND ((xLL(ni) 6 xLL(q) 6
xUR(ni)) OR (xLL(ni) 6 xUR(q) 6 xUR(ni))).
3. Once S1 and S2 reach the leaf nodes they output their shares of the result set,R1 andR2.
4. The client C reconstructs the resultsR using the given sharesR1 andR2.

Update(ni, δ,S1/S2)
1. The data owner sends the new shares of the entries to be updated, U1 and U2, to the servers S1 and
S2, respectively.
2. S1 and S2 replace their old shares with the new ones and update the state δ← δ+ 1.

Fig. 6. Geo-DRS+ scheme

5. Security analysis

In our construction, each search result is a share of a list associated with a leaf node and client is the
one who reconstructs the final result using these shares. To insert or delete an object within a list, the
client generates the new shares of the list and the servers will replace the old shares with the new ones.
Thus, 1) there is no leakage regarding the content of the dataset (object’s identifier), 2) it is impossible
to distinguish which object was being updated, 3) the search queries do not leak matching objects after
they have been deleted. As a result, our construction is content and backward private as proved below.

Theorem 5.1. Let L denote the leakage function of our Geo-DRS+ scheme as defined in section 3.3.
Our constructed Geo-DRS+ is L-adaptively-secure, if the protocol of De Cock et al.(we call it πs) [6]
is secure. Let Σ represents Geo-DRS+, and A be the adversary (the honest-but-curious server)5, who
breaks the security of Σ. SupposeAmake at most qu > 0 update queries. One can construct an algorithm
B that can break the UC-security of De Cock et al. [6] protocol by running A as a subroutine with non-
negligible probability if log2 qs + ` > λ, for security parameter λ.

5who follows the protocol instructions correctly, but try to learn additional information
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Proof
The proof proceeds using a hybrid argument, by game hopping, starting from the real-world game

REALΣ
A(λ).

• Game G0: This game is exactly the same as the real world security game REALΣ
A(λ). Hence, we

have

P
[
REALΣ

A(λ) = 1
]

= P [G0 = 1] .

• Game G1: In this game, we pick random values instead of the output of πs as a share of a search
query and store it in a table to be reused if same query is issued. The advantage of the adversary
in distinguishing between G0 and G1 is exactly the same as advantage for πs. Thus, we can build a
reduction B which is able to distinguish between πs and a truly random function.

|P [G0 = 1]− P [G1 = 1] | 6 AdvπsSπs ,B(λ).

• Game G2: To update (delete/insert) an object from the list associated to a leaf node on the R+tree,
this game replaces the shares of the leaf node with random shares. For update token, it uses the
leakage to learn which node should be updated. The adversary A cannot distinguish the real shares
from the truly random shares. Suppose A makes at most qu > 0 update queries, then we have

|P [G2 = 1]− P [G1 = 1] | 6 1

qu · 2`
.

• Simulator. We can simulate the IDEAL game like Game G2. Let Sπs be the simulator for De Cock
et al. [6] protocol; then we construct a simulator S for our construction to perform the search. The
algorithm B uses Sπs to construct the simulator S in order to answer the queries issued by A. We
just need to use Sπs for Aπs , to construct S for A. We have that

|P
[
REALΣ

A(λ) = 1
]
− P

[
IDEALΣ

A,S(λ) = 1
]
| 6 AdvπsSπs ,B(λ) +

1

qu · 2`
.

For the update, simulator S works the same as G1 without knowing the content (objects’ identifiers).
The simulator only uses ru to identify the bounding box of the update query and not the object’s
identifier. Therefore, it can simulate the attacker’s view using only LU pdt.

As a result, our construction satisfies content and backward privacy as the search leakage does not
include TimeDB(w) or Updates(w). �

6. Performance Evaluation

We consider that the dataset objects are represented in a metre scale where coordinate values are 64
bits (` = 64). To compare the queried coordinate value with the bounding box coordinates in each
level of the R+tree, we require a Boolean circuit of depth log ` + 1 for `-bit integers. Note that, this
logarithmic-round protocol for secure integer comparison is performed between the two non-colluding
servers during the search, hence no overhead to the client. For each comparison 3` − log ` − 2 bit
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Table 3a
Comparison

Scheme Guo2019 Li 2019 Zheng 2020 Kasra-I 2020 Kasra-II 2020 Geo-DRS+

Search Complexity (Server) O(N) O(nη log N) O(m log mN) O(log(2R)N) O(log(2R)N) O(`m log m)

Search Complexity (Client) O(θ) O((n + d)η2) O(1) O((log R)N) O((log R)N) O(1)

Update Complexity (Server) O(N) NA NA O(1) O(2tN) O(1)

Update Complexity (Client) O(1) NA NA O(ktN) O(1) O(1)

#client-server roundtrips (Search) 2 1 1 1 1 1
#client-server roundtrips (Update) 2 NA NA O(log R) 1 1

Dynamic 3 7 7 3 3 3

Avoid Search pattern leakage 7 7 7 7 7 7

Avoid Access pattern leakage 7 7 7 3 3 3

Content privacy 7 NA NA 3 3 3

Cryptographic
primitive

Geohash
and PBKE

ASPE OPE SE ASHE SS

SE: Symmetric Encryption; ASHE: Additive Symmetric Homomorphic Encryption; PBPKE: Pairing-based Public Key Encryption; OPE:
Order Preserving Encryption; Geohash:public domain geocoding system [25]; ASPE: Asymmetric Scalar-product-Preserving Encryption;
SS: Secret Sharing R: Radius of the circle query; t: Bit length of coordinates (x and y); N: Number of the data points in the dataset; Ndeg:
highest degree of a term in the used fitted polynomial θ: size of Bloom filter; n: number of the matching result; k: number of update point;
Texp exponentiation time in token generation of SSW; η: Plain-text vector size; d: number of dimensions; `: Bit length of database objects
(64 bits)

Table 3b
Comparison

Scheme Zhu 2015 Wang 2015 Wang 2016 Luo 2017 Wang 2017 Xu 2019
Search Complexity (Server) O(RNTpTmul) O(R2N) O(θN) O(Nδd′) O(2t) O(Nt2N3

deg)

Search Complexity (Client) O(1) O(RTexp) O(22tTexp) O(δd′) O(R22tTexp) O(N4
degt2)

Update Complexity (Server) NA NA NA NA O(2tN) O(1)

Update Complexity (Client) NA NA NA NA O(1) O(kt)
# client-server roundtrips (Search) 3 1 2 δ δ 1
# client-server roundtrips (Update) NA NA NA NA NA 1

Dynamic 7 7 7 7 7 3

Avoid Search pattern leakage 7 7 7 7 7 7

Avoid Access pattern leakage 7 7 7 7 7 7

Content privacy NA NA NA NA NA 7

Cryptographic
primitive

PBKE PBKE PBKE ASPE PBKE OPE

multiplications are required. Therefore, the size of the circuit is 184 secure multiplication with the depth
of 7.

Our scheme requires the pre-distribution of random binary multiplication triples by the data owner
to the servers in the setup phase which are needed for the secure comparisons during the search. This
enables the servers to perform the search without further online interaction with the data owner. With the
optimization explained in section 2.5, the communication cost for pre-distributing each multiplication
triple is a single bit. To compare the search query with each bonding box, four comparisons are required.
As mentioned earlier each comparison costs less than 3` secure multiplications in Z2. Therefore, the
overall search complexity in the worst-case scenario is 4m log m × 3` = 12`m log m multiplications in
Z2. Here, m is the maximum number of entries that can fit in each node in the tree. The number of
roundtrips between the two servers is log m(log ` + 1) as the four comparisons of the search query with
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Table 4
Memory Cost

Memory cost
Number of records

1000 2000 3000 4000

max 30 objects per node 114 MB 454 MB 5.14 GB 11.43 GB
max 40 objects per node 85 MB 451 MB 9.13 GB 20.88 GB
max 50 objects per node 82 MB 333 MB 4.5 GB 7.96 GB

Table 5
Performance (m=50)

Performance
Number of records

1000 2000 3000 4000

Search time 128.75 ms 154.7 ms 168.46 ms 180.1 ms
Communication cost (Client-Server) 16 bytes 16 bytes 16 bytes 16 bytes
Communication cost (Server-Server) 556 KB 834 KB 1.1 MB 1.1 MB

each bonding box can be performed in parallel. Finally, to perform the update the client should generate
new shares for the leaf node to be updated. There is only one round of communication to send these
values to the servers. Moreover, the server only require to replace the current value of a leaf node with
the updated values.

Table 3a and Table 3b illustrate the comparison between our Geo-DRS+ scheme with the state-of-
the-art schemes supporting spatial range queries of encrypted data from different aspects. Except our
scheme and Wang-2017, the search complexity on the server side in all of the existing related works is
linearly dependent to the number of data points/records in the database. The token generation (search on
client side) complexity is constant only in Geo-DRS+, Zhu-2015, and Zheng-2020, whereas in the rest
of the related works it varies from scheme to scheme and depends on different factors such as radius of
the circle query, bit length of coordinates, and number of data points/records in the database.

Beside of our Geo-DRS+ scheme, about half of the proposed schemes for geometric range search are
presented in the dynamic setting, the rest have limited application as the update of the database cost the
re-encryption and re-uploading the entire database. Among the dynamic schemes in this domain only
our construction, Xu-2019, and Kasra-II-2020 have only one round of communication between the client
and the server for search and update queries.

In terms of the leakages, the search pattern is inherent and unavoidable in all of the discussed schemes.
Both constructions of Kasra-2020 and Geo-DRS+ support content privacy as they are not leaking the ac-
cess pattern. More importantly the access pattern leakage is required to perform the order reconstruction
attack, whereas both access and search pattern leakages are exploited for the full database reconstruction
attack [23].

7. Implementation and Experimental Results

This section presents the experimental evaluation on the performance of the proposed constructions.
All algorithms were implemented in Java (Nodejs v10.10.0, Typescript v3.4.3) on a 64-bit machine with
3.1GHz Intel®Core(i5) processor 8GB RAM and 256GB SSD. We implemented PRF evaluations with
SHA-256. We conduct experiments on real-world datasets seqFISH+ [9] and STSCC [15] with 5000
records.
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Table 6
Performance (m=40)

Performance
Number of records

1000 2000 3000 4000

Search time 180.5 ms 194.56 ms 223.4 ms 240.8 ms
Communication cost (Client-Server) 16 bytes 16 bytes 16 bytes 16 bytes
Communication cost (Server-Server) 667 KB 667 KB 1.1 MB 1.1 MB

Table 7
Performance (m=30)

Performance
Number of records

1000 2000 3000 4000

Search time 215.36 ms 228.18 ms 250.1 ms 269.9 ms
Communication cost (Client-Server) 16 bytes 16 bytes 16 bytes 16 bytes
Communication cost (Server-Server) 501 KB 501 KB 834 KB 834 KB

The update operations for insertion and deletion perform the same. Thus, the cost of setup/update is
fixed at 5.74 ms and 12.75 ms at client and server, respectively. The size of the encrypted database is
affected by two parameters; the maximum number of entries per node and the total number of records
in the dataset. That is, the distribution of the objects in the environment will result in different height of
tree structures based on the limit on the maximum number of objects per node. As shown in Table 4, the
encrypted dataset requires 114 MB of memory at the server for a dataset with 1000 records while the
maximum number of objects per node is 30. The larger dataset with 4000 records requires 7.96 GB of
memory if the maximum number of objects per node is set to 50.

We have tested the search time (both at client and server) as well as the communication overhead
between client and server and between the two servers. The results for different settings are given in
Table 5, 6, and 7.

The results indicate that while the increase in the number of records naturally increases the search
time, the decrease in the maximum number of objects per node has the same effect. The reason for
the increase in the search time, in this case, is that there are more round trips required to complete the
search. For instance, as shown in Figure 9 (similarly in figure 7 and 8) for the same number of objects
per node (50), the search time increases from 128.75 ms to 180.1 ms when increasing the number of the
dataset records from 1000 to 4000. On the other hand, when the number of dataset records is fixed, for
example at 4000, the overall search time increases from 180.1 ms to 269.9 ms by decreasing the number
of objects per node in the tree.

As shown in t Table 5, 6, and 7, the communication cost between the client and the server is constant
at 16 bytes which is the size of the token. However, the communications between the two servers vary
from 501 KB (1000 records, 30 objects per node) to 1.1 MB (4000 records, 40/50 objects per node).

8. Conclusion

We first proposed a dynamic scheme for secure range search over spatial data and then extend it to a
more efficient (in terms of client storage and round trips between client and server) version which we
named Geo-DRS+. In terms of security and data privacy, Geo-DRS+ scheme has backward and content
privacy. As Geo-DRS+ does not leak access pattern and does not rely on OPE, it is resilient against
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Fig. 7. Search time of Geo-DRS+ scheme for m = 30)
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Fig. 9. Search time of Geo-DRS+ scheme for m = 50)

recently developed ADR and FDR attacks targeting the searchable encryption schemes supporting geo-
metric range search. The comparisons between Geo-DRS+ and state-of-the-art schemes indicates that it
is more appealing in practice due to lower computation and communication overhead.
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