
On the Impossibility of
Structure-Preserving Deterministic Primitives

Masayuki Abe1 Jan Camenisch2 Rafael Dowsley3

Maria Dubovitskaya2

1 NTT Secure Platform Laboratories, NTT Corporation, Japan
abe.masayuki@lab.ntt.co.jp

2 IBM Research - Zurich, Switzerland
{jca,mdu}@zurich.ibm.com

3 Aarhus University, Denmark
rafael@cs.au.dk

Abstract

In structure-preserving cryptography over bilinear groups, cryptographic schemes are re-
stricted to exchange group elements only, and their correctness must be verifiable only by eval-
uating pairing product equations. Several primitives, such as structure-preserving signatures,
commitments, and encryption schemes, have been proposed. Although deterministic primitives,
such as verifiable pseudo-random functions or verifiable unpredictable functions, play an impor-
tant role in the construction of cryptographic protocols, no structure-preserving realizations of
them are known. This is not coincident: in this paper, we show that it is impossible to construct
algebraic structure-preserving deterministic primitives that provide provability, uniqueness, and
unpredictability. This includes verifiable random functions, unique signatures, and verifiable
unpredictable functions as special cases. The restriction of structure-preserving primitives to be
algebraic is natural, otherwise it would not be known how to verify correctness only by evaluat-
ing pairing product equations. We further extend our negative result to pseudorandom functions
and deterministic public key encryption as well as non-strictly structure-preserving primitives,
where target group elements are also allowed in their ranges and public keys.

Keywords: Structure-preserving cryptography, Verifiable random functions, unique signatures,
Groth-Sahai proofs.

1 Introduction

Most practical cryptographic protocols are built from cryptographic primitives such as sig-
nature, encryption, and commitments schemes, pseudorandom functions, and zero-knowledge
(ZK) proofs. Thereby, the ZK proofs often “glue” different building blocks together by prov-
ing relations among their inputs and outputs. The literature provides a fair number of different
cryptographic primitives (e.g., CL-signatures [20,21], Pedersen Commitments [50], ElGamal
and Cramer-Shoup encryption [30,27], verifiable encryption of discrete logarithms [23], and
verifiable pseudo-random functions [29]) that are based on the discrete logarithm problem and
that, together with so-called generalized Schnorr protocols [51,18], provide a whole framework
for the construction of practical protocols. Examples of such constructions include anonymous
credential systems [19,6], oblivious transfer with access control [15], group signatures [8,44],
and e-cash [17]. The non-interactive versions of generalized Schnorr protocols are secure only



2

in the random oracle model, as they are obtained via the Fiat-Shamir heuristic [32], and it is
well known that random oracles cannot be instantiated securely [25,36]. Consequently, many
protocols constructed from this framework are secure in the random oracle model only.

A seminal step towards a framework allowing for security proofs in the standard model
was the introduction of the so-called GS-proofs by Groth and Sahai [38]. These are efficient
non-interactive proofs of knowledge or language membership and are secure in the standard
model. They make use of bilinear maps to verify statements and, because of this, are limited
to languages of certain types of equations, such as pairing product and multi-exponentiation
equations. In particular, GS-proofs are proofs of knowledge only for witnesses that are group
elements but not for exponents. Thus, it is unfortunately not possible to use GS-proofs as
a replacement for generalized Schnorr proofs in the “discrete logarithm-based framework of
cryptographic primitives” described earlier. To alleviate this and to obtain a similar construc-
tion framework, the research community has engaged in a quest for alternative cryptographic
primitives that are structure-preserving [3], i.e., primitives for which the public keys, inputs,
and output consist of (source) group elements and the verification predicate is a conjunction
of pairing product equations (PPEs); thus, making them compatible with proof systems that
support only pairing product equations. Such a framework is especially attractive because GS-
proofs are “on-line” extractable (i.e., the extractor works without having to rewind the prover),
a property that is essential for the construction of UC-secure [24] protocols.

Structure-preserving realizations exist for primitives such as signature schemes [3,4,40,13,2],
commitment schemes [3,5], and encryption schemes [16]. However, no structure-preserving
constructions are known for important primitives including pseudorandom functions (PRFs)
[35,28], verifiable unpredictable functions (VUFs) [47], verifiable random functions (VRFs)
[47,41], simulatable VRFs [26], unique signatures (USigs) [37,47,46], and deterministic en-
cryption (DE) [11,12], despite the fact that these primitives are widely used in the literature.
Examples include efficient search on encrypted data [12] from DE; micropayments [49] from
unique signatures; resettable ZK proofs [48], updatable ZK databases [45], and verifiable trans-
action escrow schemes [43] from VRFs. PRFs together with a proof of correct evaluation have
been used to construct compact e-cash [17], keyword search [33], set intersection protocols
[39], and adaptive oblivious transfer protocols [22,14,42]. We further refer to Abdalla et al. [1]
and Hohenberger and Waters [41] for a good overview of applications of VRFs.

Our Results. In this paper we show that it is no coincidence that no structure-preserving con-
structions of PRFs, VRFs, VUFs, USigs, and DE are known: it is in fact impossible to con-
struct them with algebraic algorithms. To this end, we provide a generic definition of a secure
structure-preserving deterministic primitive (SPDP) and show that such a primitive cannot be
built using algebraic operations only. The latter is a very reasonable restriction: all known con-
structions of structure-preserving primitives are algebraic. We then show that PRFs, VRFs,
VUFs, and USigs are special cases of an SPDP. We further extend our results to DE and to
“non-strictly” structure-preserving primitives, which are allowed to have target group elements
in their public keys and ranges.

Let us point out that of course our results do not rule out the possibility of constructing ef-
ficient protocols from GS-proofs and non-structure-preserving primitives. Indeed, a couple of
such protocols are known where, although some of the inputs include exponents (e.g., x), they
turned out to be sufficient if only knowledge of a group element (e.g., gx) is proved. Exam-
ples here include the construction of a compact e-cash scheme [7] from the Dodis-Yampolskiy
VRF [29] and of the so-called F -unforgeable signature scheme [6] and its use in the construc-
tion of anonymous credentials.



3

Related Work. Some impossibility results and lower bounds for structure-preserving primitives
are known. Abe et al. [4] show that in the case of asymmetric pairings any signature made with
a structure-preserving signature scheme must consist of at least three group elements when
the signing algorithm is algebraic. They also give constructions meeting this bound. Lower
bounds for structure-preserving commitment schemes are presented by Abe, Haralambiev and
Ohkubo [5]. They show that a commitment cannot be shorter than the message and that verify-
ing the opening of a commitment in a symmetric bilinear group setting requires evaluating at
least two independent PPEs. They also provide optimal constructions that match these lower
bounds.

Paper Organization. In Section 2 we specify our notation, define the syntax and security
properties of an algebraic SPDP, and show that such primitives are impossible to construct.
In Section 2.5, we present some generalizations to primitives that are not strictly structure-
preserving. Then, in Section 3, we show how our results can be applied to structure-preserving
PRFs, VRFs, VUFs, and Usigs. Section 3.4 is devoted to the impossibility results for structure-
preserving DE. Finally, we conclude the paper and discuss open problems and possible future
research directions in Section 4.

2 Definitions and Impossibility Results for Algebraic Structure-
Preserving Deterministic Primitives

2.1 Preliminaries

Notation. We say that a function is negligible in the security parameter λ if it is asymptotically
smaller than the inverse of any fixed polynomial in λ. The function is said to be non-negligible
in λ, otherwise. We say that an event occurs with overwhelming probability if it occurs with
probability p(λ) ≥ 1− negl(λ), where negl(λ) is a negligible function of λ.

We denote as Y $← F(X ) a probabilistic algorithm that on input X outputs Y . A similar
notation Y ← F(X ) is used for a deterministic algorithm with X and Y .

We use an upper-case, multiplicative notation for group elements and lower case letters
for exponents. Let G be a bilinear group generator that takes as input a security parameter
1λ and outputs the description of a bilinear group Λ = (p,G1,G2,GT , e,G1, G2), where
G1, G2, and GT are groups of prime order p, e is an efficient, non-degenerated bilinear map
e : G1 × G2 → GT , and G1 and G2 are generators of groups G1 and G2, respectively. We
denote as Λ∗ = (p,G1,G2,GT , e) the description Λ without the group generators. By Λsym,
we denote the symmetric setting where G1 = G2 and G1 = G2. In the symmetric setting, we
simply write G for both G1 and G2, and G for G1 and G2.

We also denote the set of all possible vectors of group elements from both G1 and G2 as
{G1,G2}∗, and from G1, G2, and GT as {G1,G2,GT }∗. Let H1 ∈ G1, H2 ∈ G2. Then,
for example, (H2, H1) ∈ {G1,G2}∗ and (Ha

1 , H
b
2 , H

c
2 , H

d
1 ) ∈ {G1,G2}∗ for a, b, c, d ∈ Zp.

Following Groth and Sahai [38], equations of the form∏
i

e(Xi, Ai)
∏
j

e(Bj , Yj)
∏
i

∏
j

e(Xi, Yj)
cij = 1

for variables Xi ∈ G1 and Yj ∈ G2 and constants Bj ∈ G1, Ai ∈ G2, and cij ∈ Zp are
referred to as PPEs, and equations of the form∏

i

Axi
i

∏
i

Y bii
∏
i

∏
j

Y
cijxj

i = T



4

for variables xi ∈ Zp and Yi ∈ G2, and constants bi, cij ∈ Zp and Ai, T ∈ G2 are referred to
as multi-scalar multiplication equations (MSEs) in G2. The MSEs in G1 are defined similarly.
The Groth-Sahai proof system allows one to prove relations represented by those types of
equations in a ZK or witness-indistinguishable manner with reasonable efficiency.

Algebraic Algorithms. For a bilinear group Λ generated by G, an algorithm Alg that takes
group elements (X1, . . . , Xn) as input and outputs a group element Y is called algebraic if
Alg always “knows” a representation of Y with respect to (X1, . . . , Xn). We consider this
property with respect to the source groups only. A formal definition for the minimal case,
where Alg takes group elements from only one group G and outputs one element of this group,
is provided below.

Definition 1 (Algebraic Algorithm). Let Alg be a probabilistic polynomial-time algorithm
that takes as an input a bilinear group description Λ generated by G, a tuple of group elements
(X1, . . . , Xn) ∈ Gn for some n ∈ N, and some auxiliary string aux ∈ {0, 1}∗ and outputs
a group element Y ∈ G and a string ext. Algorithm Alg is algebraic with respect to G if
there is a probabilistic polynomial-time extractor algorithm Ext that takes the same input as
Alg (including the random coins) and generates output (c1, . . . , cn, ext) such that for all Λ $←
G(1λ), all polynomial sizes n, all (X1, . . . , Xn) ∈ Gn, and all auxiliary strings aux, the
following inequality holds:

Pr

[
(Y, ext)← Alg(Λ∗, X1, . . . , Xn, aux; r) ;
(c1, . . . , cn, ext)← Ext(Λ∗, X1, . . . , Xn, aux; r)

∣∣∣∣Y 6=∏Xci
i

]
≤ negl(λ),

where the probability is taken over the choice of the coins r.

It is straightforward to extend this definition to algorithms that output multiple elements of
G1 and G2 of Λ. We note that all known constructions of structure-preserving primitives are
algebraic in the sense defined here. If the considered algorithms were non-algebraic, it is not
known how to prove their correct execution with GS-proofs.

One may see a similarity between the above definition and the knowledge of exponent
assumption (KEA) [9] as both involve an extractor. We emphasize, however, that the alge-
braic algorithm definition characterizes honest algorithms, whereas KEA is an assumption on
adversaries.

2.2 Definitions of Structure-Preserving Deterministic Primitives

We define the syntax of an SPDP. An SPDP consists of the following five algorithms: Setup,
KeyGen, Comp, Prove, and Verify. Besides the parameter generation (Setup), key generation
(KeyGen), and main computation algorithm (Comp), they include a proving (Prove) and a
verification (Verify) algorithm, which together guarantee that the output value of Comp was
computed correctly. We call this the provability property. It captures the verifiability notion
of some deterministic primitives such as VRFs, Usigs, and VUFs. Furthermore, for the deter-
ministic primitives that do not have an inherent verification property such as PRFs and DE,
it covers their widely used combinations with non-interactive proof systems. One of the main
advantages of structure-preserving primitives and one of the reasons to construct them is their
compatibility with existing non-interactive zero-knowledge (NIZK) proof systems.

Definition 2 (Provable Structure-Preserving Deterministic Primitive). A provable structure-
preserving deterministic primitiveΣSPDP with respect to a bilinear group generator G consists
of five algorithms ΣSPDP = (Setup,KeyGen,Comp,Prove,Verify) that operate as follows:



5

– CP
$← Setup(Λ) is a probabilistic algorithm that takes bilinear group description Λ ←

G(1λ) as input and outputs the common parameters CP that includeΛ, which is composed
of the default generators, but do not contain any other elements of G1,G2,GT . CP defines
the secret key space SK, the public key space PK, the proof space P , and a deterministic
polynomial-time computable function F : SK × X → Y for some domain X and range
Y . It is implicitly, if not, given to every further algorithm.

– (PK ,SK )
$← KeyGen(CP) is a probabilistic key generation algorithm that takes as input

CP and outputs a public key PK ∈ PK and a secret key SK ∈ SK.
– Y ← Comp(X,SK ) is a deterministic algorithm that takes X ∈ X and SK as input and

outputs Y = FSK (X) ∈ Y .
– Π

$← Prove(X,SK ) is a probabilistic algorithm that takes X and SK as input and
outputs a proof Π ∈ P .

– 0/1 ← Verify(X,Y,Π,PK ) is a deterministic verification algorithm that takes X,Y,Π ,
and PK as input and outputs 1 or 0, representing acceptance or rejection of proof Π ,
respectively.

The following properties must be satisfied:

1. Structure-Preserving: PK, X , Y , and P are subsets of {G1,G2}∗. Furthermore, the ver-
ification algorithm is restricted to perform group membership testing, group operations,
and evaluation of PPEs over Λ.

2. Uniqueness: For all λ,CP ∈ Setup(1λ) and (PK ,SK ) ∈ KeyGen(CP), there exist no
values (X,Y, Y ′, Π,Π ′) such that Y 6= Y ′ and Verify(X,Y,Π,PK ) = Verify(X,Y ′,
Π ′,PK ) = 1.

3. Provability: For all λ, CP ∈ Setup(1λ), (PK ,SK ) ∈ KeyGen(CP), X ∈ X , Y ←
Comp(X,SK ), and Π ∈ Prove(X,SK ), it holds that Verify(X,Y,Π,PK ) = 1.

Note that the uniqueness is defined with respect to correctly generated kyes, which is more
relaxed than that in the case of verifiable pseudo-random funcitons where uniqueness is defined
over any kyes. As we argue impossibility, however, the relaxed form strengthen our result.

Throughout the paper, we use the convention that the common parameters CP include Λ
with the default generators but does not contain any other elements of G1,G2,GT in Λ. Fur-
thermore, the parameters are given as input to every relevant algorithm. It is also assumed that
PK can be recovered from SK . This is justified as we will only consider algebraic KeyGen.

Now, we define two security properties. The unpredictability property states that no polynomial-
time adversary can predict the output value Y for an input X after having called the Comp and
Prove oracles with inputs that are different from X . The pseudorandomness property states
that no polynomial-time adversary can distinguish Y from a random value.

Definition 3 (Unpredictability). A provable structure-preserving deterministic primitiveΣSPDP

is unpredictable if for all probabilistic polynomial-time algorithms A we have that

Pr

 Λ← G(1λ) ; CP
$← Setup(Λ) ;

(PK ,SK )
$← KeyGen(CP) ;

(X,Y )← AComp(·,SK ),Prove(·,SK )(PK )

∣∣∣∣∣∣∣ Y = Comp(X,SK ) ∧
X /∈ S

 ≤ negl(λ) ,

where S is the set of inputs queried to the oracles Comp and Prove.

Definition 4 (Pseudorandomness). A provable structure-preserving deterministic primitive
ΣSPDP is pseudorandom if for all probabilistic polynomial-time distinguishers D = (D1,D2)



6

we have that

Pr


Λ← G(1λ) ; CP $← Setup(Λ) ;

(PK ,SK )
$← KeyGen(CP) ;

(X, st)← D1
Comp(·,SK ),Prove(·,SK )(PK ) ;

Y0 ← FSK (X) ; Y1
$← Y ; b

$← {0, 1} ;
b′

$← D2
Comp(·,SK ),Prove(·,SK )(Yb, st)

∣∣∣∣∣∣∣∣∣∣∣
b = b′ ∧
X /∈ S

 ≤
1

2
+ negl(λ),

where S is the set of queries to the oracles Comp and Prove.

One can see thatΣSPDP having the unpredictability property is a structure-preserving VUF,
and ΣSPDP with the pseudorandomness property is a structure-preserving VRF.

2.3 Inexistence of Structure-Preserving Verifiable Unpredictable Functions

We now prove that a structure-preserving VUF, as defined in the previous section, cannot
exist. Namely, we show that a provable SPDP cannot be unpredictable according to Definition
3 because of its uniqueness and provability properties.

Theorem 1. Let ΣSPDP = (Setup,KeyGen,Comp,Prove,Verify) be a provable structure-
preserving deterministic primitive with respect to G. If the discrete logarithm problem is hard
in the groups of Λ generated by G and KeyGen, Comp, and Prove are algebraic algorithms
with respect to G, then ΣSPDP is not unpredictable.

Proof. For simplicity, we first consider a symmetric bilinear setting (Λ = Λsym), where PK,
X ,Y,P ⊂ {G}∗. Furthermore, we consider X to consist only of a single group element. We
then show that the same result holds for the input being a tuple of group elements from G and
also in the asymmetric setting, for both Type 2 pairings (where an efficiently computable ho-
momorphism from G2 to G1 exists and there is no efficiently computable homomorphism from
G1 to G2), and Type 3 pairings (where there are no efficiently computable homomorphisms
between G1 and G2) [34].

The outline of the proof is as follows. First, in Lemma 1 we show that because of the
provability and uniqueness properties of ΣSPDP, as specified in Definition 2, the output of
Comp must have a particular format, namely Comp(X,SK ) = (Ga1Xb1 , . . . , Ga`Xb`) for
some (secret) constants a1, . . . , a`, b1, . . . , b` ∈ Zp. Then, in Lemma 2, we prove that, if the
output of Comp has this format, then the unpredictability property (cf. Definition 3) does not
hold for ΣSPDP. This means that no structure-preserving VUF can exist.

Lemma 1. LetΣSPDP = (Setup,KeyGen,Comp,Prove,Verify) be a structure-preserving de-
terministic primitive with respect to G according to Definition 2. If KeyGen,Comp, and Prove
are algebraic algorithms with respect to G, and the discrete-logarithm problem is hard in the
base group of Λ generated by G, then, with overwhelming probability taken over the ran-
dom coins used in the algorithms in ΣSPDP, Comp(X,SK ) = (Y1, . . . , Y`) = (Ga1Xb1 , . . . ,
Ga`Xb`) holds for some constants a1, . . . , a`, b1, . . . , b` ∈ Zp.

Proof. Let Λ← G(1λ) and CP ← Setup(Λ). Fix (PK ,SK )
$← KeyGen(CP), where PK ⊂

{G}∗. Let x $← Zp and X = Gx.



7

First, note that because Comp, Prove, and KeyGen are algebraic algorithms, their outputs
can be expressed as

Comp(X,SK ) = Y = (Y1, . . . , Y`) with Yi = GaiXbi , (1)

Prove(X,SK ) = Π = (Π1, . . . ,Πn) with Πj = GujXvj , and (2)

PK = (S1, . . . , Sm) with Sf = Gsf , (3)

where ai = H1,i(X,SK ), bi = H2,i(X,SK ), uj = H3,j(X,SK , r), and vj = H4,j(X,SK , r)
for some arbitrary functions H`,m : {0, 1}∗ → Zp where r is the randomness used by the
Prove algorithm. We note that ai, bi, uj , and vj can depend on X in an arbitrary manner, but,
as Comp and Prove are algebraic, one can extract ai, bi, uj , and vj as values from Zp using
the extractors of the algorithms Comp and Prove.

Second, recall that, according to Definition 2, the verification algorithm consists of PPEs.
Let the k-th PPE used in the verification algorithm be

m∏
f=1

e
(
Sf , X

ck,1,f

m∏
t=1

S
ck,2,f,t

t

∏̀
i=1

Y
ck,3,f,i

i

q∏
j=1

Π
ck,4,f,j

j

)
·
n∏
q=1

e
(
Πq,

n∏
j=1

Π
ck,5,q,j

j

)
·

· e
(
X,Xck,6

∏̀
i=1

Y
ck,7,i

i

q∏
j=1

Π
ck,8,j

j

)
·
∏̀
w=1

e
(
Yw,

∏̀
i=1

Y
ck,9,w,i

i

n∏
j=1

Π
ck,10,w,j

j

)
= 1.

The intuition behind the proof is as follows. We note that Comp should perform the com-
putation without necessarily “knowing” the discrete logarithm of the input; otherwise, one can
use Comp to solve the discrete logarithm for X . Now, one can see that the relation in the expo-
nents of the k-th PPE for the tuple (X,Y,Π,PK ) induces a polynomial Qk(x) in the discrete
logarithm x = logGX . Basically, we can re-write the k-th PPE as e(G,G)Qk(x) = 1. First, we
prove that Qk(x) is a trivial function; otherwise, it would be possible to solve the discrete log-
arithm problem for the given X by solving Qk. Second, we show that if Qk is trivial, then, by
the uniqueness property, ai and bi are constants. Let ai, bi, uj , and vj be the values computed
for one specific X : Yi = GaiXbi , Πj = GujXvj , and Verify(PK , X, Y,Π) = 1. Propo-
sition 2 shows that these values can be reused to compute a correct Ỹ for any other X̃ ∈ X .
Therefore, if Ỹi is computed as GaiX̃bi and Π̃j as Guj X̃vj , instead of using the normal com-
putation procedures, then (X̃, Ỹ , Π̃,PK ) is also accepted by the verification algorithm due to
the triviality of Qk. Then, from the uniqueness and provability properties, it follows that ai, bi
are the only valid values, i.e., constants.

Now we provide the proof in detail. First, we prove that all polynomials Qk induced by the
verification PPEs, as described above, are constants with overwhelming probability.

Proposition 1. If the discrete logarithm problem in the base group of Λ is hard, then Qk is a
trivial function.

Proof. The proof is done by constructing a reduction algorithm R that takes as an input a group
description Λ = (p,G,GT , e,G) generated by a group generator G(1λ) and a random element
X ∈ G and outputs x ∈ Zp that satisfies X = Gx with high probability.

The R works as follows. It first takes Λ as an input and sets the common parameters CP =
Λ. It then runs KeyGen(CP ), Comp(X,SK ), and Prove(X,SK ) for the given X . It also
runs the corresponding extractors for KeyGen, Comp, and Prove. The extractor for KeyGen
outputs representations sf that satisfy Sf = Gsf with overwhelming probability. Similarly,



8

the extractor for Comp outputs representations ai and bi, such that Yi = GaiXbi , and the
extractor for Prove outputs uj and vj , such that Πj = GujXvj , as concrete values in Zp.

This set of extracted exponents sf , ai, bi, uj , and vj induces a quadratic formula Qk in
the exponents of the k-th pairing product verification equation. Let us call the variable of
this exponent equation x̃, then we can write the k-th PPE as e(G,G)Qk(x̃) = 1. Given the
representations, R can compute Qk(x̃) = d2x̃

2 + d1x̃ + d0 in Zp. The condition that Qk(x̃)
is non-trivial guarantees that d2 6= 0 or d1 6= 0. However, R can then solve Qk(x̃) = 0 for x̃
with standard algebra. Due to the provability property, x is one of the possible solutions to x̃.
Therefore, if the equation is non-trivial, we can solve this equation for x̃ and obtain the discrete
logarithm of X : x̃ = x. If the discrete logarithm problem is hard in the base group of Λ, then
Qk must be trivial. �

Now we show that if Qk is trivial, then, by the provability and uniqueness properties, ai
and bi are constants.

Proposition 2. Fix (PK ,SK , X) and let ai ← H1,i(X,SK ), bi ← H2,i(X,SK ), uj ←
H3,j(X,SK , r), and vj ← H4,j(X,SK , r). If all the relations in the exponents of the PPEs
are trivial, then, for any X̃ ∈ G, Ỹ = (Ỹ1, . . . , Ỹ`) with Ỹi = GaiX̃bi and Π̃ = (Π̃1, . . . , Π̃n)
with Π̃j = Guj X̃vj , it holds that (X̃, Ỹ , Π̃,PK ) will be accepted by the verification algo-
rithm.

Proof. Consider fixed (PK ,SK , X), any X̃ ∈ G, and Ỹ and Π̃ computed from X̃ as speci-
fied in the proposition. Note that the verification algorithm only evaluates PPEs and performs
group membership tests. First, all group membership tests are clearly successful for the tu-
ple (X̃, Ỹ , Π̃,PK ). Since all polynomials Qk are trivial and due to the way in which Ỹ and
Π̃ are defined, it holds that the result of evaluating the k-th PPE will be the same for any
tuple (X̃, Ỹ , Π̃,PK ). Therefore, Verify(X̃, Ỹ , Π̃,PK ) should output the same value for ev-
ery X̃ ∈ G. Now, considering the case in which X̃ = X we have Ỹ = (Ỹ1, . . . , Ỹ`) with
Ỹi = GaiXbi and Π̃ = (Π̃1, . . . , Π̃n) with Π̃j = GujXvj . However, due to the correctness of
the extractors of Comp and Prove, these Ỹ and Π̃ are exactly the outputs of Comp(X,SK ) and
Prove(X,SK ). Therefore, by the provability property, it holds that Verify(X, Ỹ , Π̃,PK ) = 1
for X̃ = X; thus, for any X̃ ∈ G, Verify(X̃, Ỹ , Π̃,PK ) = 1 also. �

Now, for an arbitrary X̃ ∈ G, consider the tuple (PK ,SK , X̃, Ỹ , Π̃, a1, . . . , a`, b1, . . . ,
b`) of values as defined above. The Π̃ is a valid proof for (X̃, Ỹ ); thus, the uniqueness property
guarantees that there is no other Ŷ 6= Ỹ for which there is a valid proof that Ŷ is the output
corresponding to X̃ . However, the provability property guarantees that for (X̃,Comp(X̃,SK ))
there is a valid proof of correctness. Hence, for any X̃ ∈ G, it holds that

Comp(X̃,SK ) = Ỹ = (Ỹ1, . . . , Ỹ`) = (Ga1X̃b1 , . . . , Ga`X̃b`).

�

Lemma 2. Suppose thatΣSPDP = (Setup,KeyGen,Comp,Prove,Verify) is a provable Structure-
Preserving Deterministic Primitive such that Comp(X,SK ) = (Y1, . . . , Y`) = (Ga1Xb1 , . . . ,
Ga`Xb`) for some constants a1, . . . , a`, b1, . . . , b` ∈ Zp. Then ΣSPDP does not satisfy the
unpredictability requirement from Definition 3.

Proof. Pick X̂, X̃ and define X , such that X = X̂2/X̃ /∈ {X̂, X̃}. Then an adversary that
learns

Comp(X̂,SK ) = (Ŷ1, . . . , Ŷ`) = (Ga1X̂b1 , . . . , Ga`X̂b`), and

Comp(X̃,SK ) = (Ỹ1, . . . , Ỹ`) = (Ga1X̃b1 , . . . , Ga`X̃b`)



9

can compute the value of Comp(X,SK ) as:(
Ŷ 2
1

Ỹ1
, . . . ,

Ŷ 2
`

Ỹ`

)
=

(
G2a1X̂2b1

Ga1X̃b1
, . . . ,

G2a`X̂2b`

Ga`X̃b`

)
=

Ga1 (X̂2

X̃

)b1
, . . . , Ga`

(
X̂2

X̃

)b`
=
(
Ga1X

b1
, . . . , Ga`X

b`
)
= Comp(X,SK );

therefore, ΣSPDP is not unpredictable.

�

We next show that the same result holds for inputs being a tuple of group elements from G.

X is a tuple of group elements. Both Lemmas 1 and 2 can be easily modified to the case
in which X consists of more than one (say t) group element as follows. The reduction algo-
rithm, after receiving the discrete logarithm challenge X1, will select t− 1 random exponents
x2, . . . , xt and fix Xi as Gxi for i = 2, . . . , t. Then the lemmas use the first group element X1

in the place of the original X . Note that in the computation of Yj and Πj , the exponents corre-
sponding to X2, . . . , Xt can be incorporated into H1,j(X,SK ) and H3,j(X,SK , r) since the
prover “knows” x2, . . . , xt. If the quadratic equationsQk(x̃1) in the exponents of the PPEs are
not trivial, then the first element of the input can be used to solve the discrete logarithm prob-
lem; otherwise, supposing that the uniqueness and provability properties hold, the elements of
the output will be of the form Ỹi = GaiX̃1

bi (for the fixed values x2, . . . , xt) and this can
be used to break the unpredictability property by asking two queries in which only the first
elements of the inputs are different (i.e., X̂1 and X̃1) Then learning the output corresponding
to a third input that has X1 = X̂2

1/X̃1 as the first element and has the remaining elements
equal to the ones in the oracle queries.

Asymmetric bilinear groups setting. Lemmas 1 and 2 can be generalized to the asymmetric
setting as well. We consider both Type 2 and Type 3 pairings. IfX consists of t group elements,
we choose t− 1 random exponents x2, . . . , xt and fix Xi as Gxi

1 if the i-th input element is in
group G1, or Gxi

2 if the i-th input element is in group G2. Then either some quadratic equation
Qk(x̃1) in the exponents of the PPEs is not trivial in x1, and this can be used to solve the
discrete logarithm problem in the base group in which X1 is contained, or one of the three
security properties (provability, uniqueness and unpredictability) does not hold.

In the case of Type 3 pairings, where there are no efficiently computable homomorphisms
between the groups, each Yj (let Gc denote the group in which it is and Gc its generator) is of
the form

Yj = GH1,j(X,SK )
c X

H2,j(X,SK )
1 ,

where H2,j(X,SK ) = 0 if X1 and Yj are not in the same group and each Πj (that is in the
group Gc) is of the form

Πj = GH3,j(X,SK ,r)
c X

H4,j(X,SK ,r)
1 ,

where H4,j(X,SK , r) = 0 if X1 and Πj are not in the same group. In both cases, the expo-
nents corresponding to X2, . . . , Xt are incorporated into H1,j(X,SK ) and H3,j(X,SK , r).
Then the argument continues, as in the previous case.

In the case of Type 2 pairings, there is an efficiently computable homomorphism φ : G2 →
G1. Then an element Yj of the output (or an element Πj of the proof) that is in group G1



10

can depend on both group generators and on X1 or its mapping φ(X1) into G1. Namely, if
X1 ∈ G1, then Yj , Πj ∈ G1 have the form:

Yj = G
H1,j(X,SK )
1 X

H2,j(X,SK )
1 φ(G2)

H5,j(X,SK ) ,

Πj = G
H3,j(X,SK ,r)
1 X

H4,j(X,SK ,r)
1 φ(G2)

H6,j(X,SK ,r) ,

and Yj , Πj ∈ G2 have the form:

Yj = G
H5,j(X,SK )
2 ,

Πj = G
H6,j(X,SK ,r)
2 .

If X1 ∈ G2, then Yj , Πj ∈ G1 have the form:

Yj = G
H1,j(X,SK )
1 φ(X1)

H2,j(X,SK )φ(G2)
H5,j(X,SK ) ,

Πj = G
H3,j(X,SK ,r)
1 φ(X1)

H4,j(X,SK ,r)φ(G2)
H6,j(X,SK ,r) ,

and Yj , Πj ∈ G2 have the form:

Yj = X
H2,j(X,SK )
1 G

H5,j(X,SK )
2 ,

Πj = X
H4,j(X,SK ,r)
1 G

H6,j(X,SK ,r)
2 .

Then we should have H1,j(X,SK ) = aj , H2,j(X,SK ) = bj and H5,j(X,SK ) = zj
for constants aj , bj , and zj if the provability and uniqueness hold. However, in this case the
unpredictability does not hold for the same reasons as before.

Putting Lemmas 1 and 2 together completes the proof of Theorem 1.

�

2.4 Extension to Quasi-Deterministic Functions

The previous result can be extended to quasi-deterministic functions where the uniqueness
condition is relaxed so that for each input value there are at most poly(λ) output values for
which a valid proof exists. It is possible to prove an analogue of Proposition 2. The idea is that
for any fixed (PK ,SK , X) and extracted values ai ← H1,i(X,SK , r), bi ← H2,i(X,SK , r),
uj ← H3,j(X,SK , r), and vj ← H4,j(X,SK , r), if all the relations in the exponents of
the PPEs are trivial, then, for any X̃ ∈ G, Ỹ = (Ỹ1, . . . , Ỹ`) with Ỹi = GaiX̃bi and
Π̃ = (Π̃1, . . . , Π̃n) with Π̃j = Guj X̃vj , it holds that (X̃, Ỹ , Π̃,PK ) will be accepted by
the verification algorithm. However, since there are at most poly(λ) outputs with valid proofs
for each input, it follows that there are at most poly(λ) distinct sets of extracted values (ai, bi).
Therefore, an adversary, after making poly(λ) + 1 queries to the Comp(·) oracle, has a non-
negligible probability of randomly picking two outputs that use the same pair of exponents, in
which case it can break the unpredictability property in the same way as done in Lemma 2.



11

2.5 Extension to “Non-strictly” Structure-Preserving Primitives

The definition in the previous sections captures so-called “strictly” SPDPs, i.e., PK and Y can
contain only source group elements. Let us discuss the case of structure-preserving primitives
that also have target group elements in their public key space and/or their range. A target
group element can be represented by two source group elements using pairing randomization
techniques [3] or even deterministically, by fixing the randomizing exponents. By this, the
provability property can be preserved. Now, the question is: if the uniqueness property holds,
can the output be unpredictable? In this section, we argue that our impossibility result can be
extended to some cases of “non-strictly” SPDPs, formally defined below:

Definition 5 (“Non-strictly” Structure-Preserving Deterministic Primitive). Let ΣSPDP =
(Setup,KeyGen,Comp,Prove,Verify) be a structure-preserving deterministic primitive ac-
cording to Definition 2, except that the range of Comp and KeyGen can also contain target
group elements (Y,PK ⊂ {G1,G2,GT }∗). Then ΣSPDP is called a “non-strictly” structure-
preserving deterministic primitive.

We first extend the notion of the algebraic algorithms from Definition 1 so that it operates in
all groups of Λ. Then one can use the extractors of KeyGen and Comp to also extract repre-
sentations of target group elements output by them. A formal definition for the minimal case
of Type 3 asymmetric groups and outputs consisting of one element of each group is provided
below.

Definition 6 (Extended Algebraic Algorithms). Let Alg be a probabilistic polynomial-time
algorithm that takes as an input the Λ of a Type 3 asymmetric bilinear group generated by
G, two tuples of group elements (X1,1, . . . , X1,n) ∈ {G1}n and (X2,1, . . . , X2,m) ∈ {G2}m
for some n,m ∈ N, and some auxiliary string aux ∈ {0, 1}∗ and outputs group elements
Y ∈ G1,W ∈ G2, and Z ∈ GT and a string ext. The algorithm Alg is algebraic with
respect to G if there is a probabilistic polynomial-time extractor algorithm Ext that takes the
same input as Alg (including the random coins) and generates output (c = (c1, . . . , cn), d =

(d1, . . . , dm), f = (f1, . . . , fnm), ext) such that for all Λ $← G(1λ), all polynomial-sized
n,m, all (X1,1, . . . , X1,n) ∈ {G1}n, (X2,1, . . . , X2,m) ∈ {G2}m, and all auxiliary strings
aux, the following inequality holds

Pr

 (Y,W,Z, ext)← Alg(Λ∗, X, aux; r) ;
(c, d, f, ext)← Ext(Λ∗, X, aux; r)

∣∣∣∣∣∣∣∣
Y 6=

∏n
i=1X

ci
1,i∨

W 6=
∏m
j=1X

dj
2,j∨

Z 6=
∏n
i=1

∏m
j=1

e(X1,i, X2,j)
f(j−1)n+i

 ≤ negl(λ) ,

where the probability is taken over the choice of r.

Similarly to Definition 1, this definition can be extended to algorithms that output multiple
elements of the groups of Λ and for other types of groups. Adaptation to Type 1 is trivial by
considering X1,i = X2,i, and to Type 2 is also straightforward by letting X1,k+i = φ(X2,i)
for some k < n and all i ∈ {1, . . . ,m}.

Below, we show that if the provability and uniqueness properties (according to Definition 5)
hold, then the unpredictability property does not hold.

Theorem 2. Let ΣSPDP = (Setup,KeyGen,Comp,Prove,Verify) be a “non-strictly” prov-
able structure-preserving deterministic primitive with respect to bilinear group generator G.
If the discrete logarithm problem is hard in the source groups generated by G and KeyGen,
Comp, and Prove are algebraic with respect to G, as defined in Definition 6, then ΣSPDP is not
unpredictable.



12

Proof. We first address the case of Type 3 bilinear groups. The outline of the proof is the same
as that for Theorem 1. Without loss of generality, we consider the case in which X consists of
only one element X1 ∈ G1 (since the adversary can set all inputs except X1 to 1). We show
that for any ΣSPDP that is provable and has the uniqueness property according to Definition 2,
the output of Comp must have a particular format.

Fix (PK ,SK ) ← KeyGen(CP), where the public key consists of both source and target
group elements, i.e., PK ⊂ {G1,G2,GT }∗. Let X = X1 be the input. Since Comp is deter-
ministic and KeyGen, Comp, and Prove are all algebraic algorithms over Λ, their respective
outputs can be represented as

Comp(X,SK ) = Y = (Y1, . . . , Y`,W1, . . . ,W`′ , Z1, . . . , Z`′′), and

Prove(X,SK ) = Π = (Π1, . . . ,Πn, Π
′
1, . . . ,Π

′
n′)

where

Yi = G
a1,i
1 X

b1,i
1 ,Wi = G

a2,i
2 , Zi = e(G1, G2)

a′ie(X1, G2)
b′i ,

Πi = Gui
1 X

vi
1 , Π

′
i = G

u′i
2 ,

and one can extract the exponents a1,i, b1,i, a2,i, a′i, b
′
i, ui, vi, and u′i as values in Zp using

the extractors of the algorithms KeyGen, Comp, and Prove. Recall that the verification algo-
rithm consists of evaluations of PPEs. The proof works very similarly to that of Lemma 1. For
X = X1 ∈ G1, with unknown exponent x1 = logG1

X1, the relation among the exponents of
the k-th PPE for the tuple (X,Y,Π,PK ) with respect to the base e(G1, G2) induces a poly-
nomial Qk(x1) in x1. Thus, the k-th PPE can be written as e(G1, G2)

Qk(x1) = 1. As before,
Qk(x1) is a trivial function since otherwise it would be possible to solve the discrete logarithm
problem for the given X1 by solving Qk. Let a1,i, b1,i, a2,i, a′i, b

′
i, ui, vi, and u′i, be the ex-

ponents obtained from one specific computation of Yi Wi, Zi, and Πi with input X1. Then,
Ỹi, W̃i, Z̃i, and Π̃i, computed for an arbitrary input X̃1 ∈ G1 with these fixed exponents, pass
the verification due to the triviality of Qk. From the uniqueness property, it now follows that
a1,i, b1,i, a2,i, a′i, and b′i are the only valid values with respect to X̃1. Thus, they are constants.

Next we prove that if the output of Comp has this format, then the unpredictability property
(Definition 3) does not hold for ΣSPDP. We do so by constructing an adversary breaking the
unpredictability property as follows. Select X̂1, X̃1 ∈ G1, set X̂ = X̂1 and X̃ = X̃1, and
define X such that X1 = X̂2

1/X̃1 /∈ {X̂1, X̃1}. As we already proved in Lemma 2 that the
unpredictability does not hold for source group elements, we assume for simplicity that the
output consists only of the target group elements. The adversary that learns Comp(X̂,SK ) =

(Ẑ1, . . . , Ẑ`′′) with Ẑi = e(G1, G2)
a′ie(X̂1, G2)

b′i and Comp(X̃,SK ) = (Z̃1, . . . , Z̃`′′) with
Z̃i = e(G1, G2)

a′ie(X̃1, G2)
b′i can compute the value of Comp(X,SK ) = (Z1, . . . , Z`′′) as(

Ẑ2
1

Z̃1
, . . . ,

Ẑ2
`′′

Z̃`′′

)
because we have that

Ẑ2
i

Z̃i
=
e(G1, G2)

2a′i e(X̂1, G2)
2b′i

e(G1, G2)a
′
i e(X̃1, G2)b

′
i

= e(G1, G2)
a′i e

(
X̂2

1

X̃1

, G2

)b′i
= Zi.

Therefore, ΣSPDP is also not unpredictable for the target group elements.

We next proceed to the case of Type 1. Let X be a group element in G. Then, as for
the above case, if the discrete-logarithm problem is hard in G, we have Comp(X,SK ) =

(Y1, . . . , Y`, Z1, . . . , Z`′) with Yi = GaiXbi , and Zi = e(G,G)a
′
ie(X,G)b

′
ie(X,X)c

′
i for



13

constants ai, bi, a′i, b
′
i, and c′i. We construct an adversary that breaks the unpredictability prop-

erties as follows. It makes three queries X = 1, X = G, and X = G2, and receives the
outputs e(G,G)a

′
i , e(G,G)a

′
i+b
′
i+c
′
i , and e(G,G)a

′
i+2b′i+4c′i . The adversary can then compute

e(G,G)a
′
i , e(G,G)b

′
i , and e(G,G)c

′
i , which are sufficient to compute

Zi = e(G,G)a
′
ie(Gx, G)b

′
ie(Gx, Gx)c

′
i

for any x. Thus, the scheme is not unpredictable.
Finally, regarding Type 2 bilinear groups, we have two cases. First, if the scheme accepts

inputs containing at least one element from G1, then the proof for Type 3 groups applies since
we can argue in exactly the same manner by setting all G2 elements in inputs to 1. Second,
if the scheme accepts inputs containing at least one element from G2, the proof for Type 1
applies since we can move the element to G1 using homomorphism φ. �

3 Impossibility Results for Structure-Preserving Unique Signatures,
Verifiable Random Functions, and Pseudorandom Functions

In this section, we show how the definition of an abstract provable SPDP given in Section 2
relates to the definitions of structure-preserving VRFs and USigs. We show that the security
properties of an SPDP are necessary conditions for any VRF or USig to be secure. Note that
the requirements are necessary conditions, but may not be sufficient, e.g., in the case of VRF,
pseudorandomness is a stronger requirement than unpredictability. We also discuss how the
SPDP definition relates to structure-preserving PRFs.

3.1 Impossibility of Structure-Preserving Unique Signatures

Let ΣUSig = (Setup,KeyGen,Sign,Verify) be a structure-preserving signature scheme with
respect to group generator G [3]. The setup algorithm Setup takesΛ generated by G and outputs
a CP . The key generation algorithm KeyGen takes the CP and outputs a key pair PK and
SK . The signing algorithm Sign takes SK and message X as input and outputs a signature Y .
The verification algorithm Verify takes PK , X , and Y as input and outputs 1 or 0. Structure-
preservation requires that PK , X , and Y consist only of source group elements of Λ. The
signature scheme must satisfy the standard notions of correctness and existential unforgeability
against adaptively chosen message attacks. According to Lyskanskaya [46], Σ is a unique
signature scheme if the signing function Sign is deterministic and the following uniqueness
property holds: there are no two distinct signatures Y and Y ′ accepted by the verification
algorithm with respect to the same message X . Namely, there is no tuple (PK , X, Y, Y ′)
such that Y 6= Y ′ and Verify(X,Y,PK ) = Verify(X,Y ′,PK ) = 1 holds. We then state the
following impossibility.

Theorem 3. If the discrete logarithm problem is hard in the groups of Λ generated by G, there
is no structure-preserving unique signature scheme whose KeyGen and Sign are algebraic
algorithms with respect to G and that is existentially unforgeable against adaptive chosen
message attacks.

To prove Theorem 3, it is sufficient to show that unforgeable structure-preserving unique
signature schemes are unpredictable SPDPs and apply Theorem 1.



14

Lemma 3. A structure-preserving unique signature scheme that is existentially unforgeable
against adaptive chosen message attacks is an unpredictable structure-preserving determinis-
tic primitive.

Proof. We first verify the syntactical consistency of a structure-preserving signature scheme
ΣUSig as an SPDP ΣSPDP. Observe that the algorithms Setup and KeyGen of ΣUSig are exactly
the same as those ofΣSPDP. The Sign algorithm ofΣUSig corresponds to the Comp algorithm of
a SPDP. There is no algorithm inΣUSig that corresponds to Prove ofΣSPDP. Therefore, we can
think of a constant function that outputs a constant Π to be Prove. Then, Verify of ΣUSig can
be seen as Verify of ΣSPDP that ignores input Π . With the above syntactical correspondence,
one can inspect that the correctness of ΣUSig implies the provability, as in Definition 2. The
uniqueness of ΣUSig is also the same as that in Definition 2.

It remains to show that existential unforgeability against adaptive chosen message attacks
implies the unpredictability property. Suppose that the adversary attacking the unpredictability,
as in Definition 3, succeeds in computing Y such that Y = Comp(X,SK ) holds for a freshX .
Then such (X,Y ) satisfies Verify(X,Y,Π,PK ) = 1 for the above constantΠ . It then satisfies
Verify(X,Y,PK ) = 1 for Verify of ΣUSig due to the correspondence of Verify in ΣUSig and as
ΣSPDP. Accordingly, (X,Y ) is a valid forgery breaking the existential unforgeability ofΣUSig.
�

3.2 Impossibility of Structure-Preserving Verifiable Random Functions

A structure-preserving VRF consists of algorithmsΣVRF = (Setup,KeyGen,Comp,Prove,Verify)
whose syntax is exactly the same as that of an SPDP. Namely, its public key space, domain,
range, and proof space consist only of source group elements and it satisfies the structure-
preserving, provability, and uniqueness properties. A VRF is required to satisfy the pseudoran-
domness property. We argue that constructing a structure-preserving VRF is impossible in the
following sense.

Theorem 4. If the discrete logarithm problem is hard in the source groups of Λ generated
by G, there is no structure-preserving verifiable random function whose KeyGen, Comp, and
Prove algorithms are algebraic with respect to G and that is pseudorandom, as defined in
Definition 4.

To prove the theorem, it is sufficient to show that a structure-preserving VRF satisfying the
pseudorandomness property is an unpredictable SPDP and apply Theorem 1.

Lemma 4. A structure-preserving verifiable random function that is pseudorandom according
to Definition 4 is an SPDP satisfying the unpredictability property, as defined in Definition 3.

Proof. The syntactical equivalence is by definition. We focus on the part that pseudorandom-
ness implies unpredictability. From any adversary A that wins the unpredictability game from
Definition 3 with non-negligible probability, we construct a distinguisher D = (D1,D2) that
wins the pseudorandomness game from Definition 4 with a probability non-negligibly larger
than 1/2. The D uses A that breaks the unpredictability. The D1 executes a copy of A inter-
nally and forwards the oracle queries and answers appropriately. If A produces an output pair
(X,Y ), where Y is an output value for a fresh inputX that was not queried to the oracle before,
then D1 uses X as its output and forwards Y to D2 that uses Y to distinguish if the returned
challenge Yb is a random value or the output of the real function. If no such pair (X,Y ) is
produced by A, then D makes a random guess. From the construction, the advantage of D is
the same as the success probability of A, as claimed. �



15

We note that this result also rules out the construction of a structure-preserving simulatable
VRF (sVRF) [26], which is a special case of a VRF (see Definition 1 from [26]) and is a key
building block, for instance, of some e-cash schemes [7].

3.3 Impossibility of Structure-Preserving Pseudorandom Functions

We define structure-preserving PRFs and their security as follows. Note that keys are allowed
to be scalar values and the pseudorandomness is defined in a weaker form. The standard pseu-
dorandomness property requires that, given an unlimited number of oracle accesses to either a
PRF or a truly random function, no polynomial-time adversary can distinguish which oracle it
has accessed. The following weaker notion, in which only one call to the oracle that is either a
PRF or a random function is provided, is implied by the standard one. The implication can be
proved using a standard hybrid argument.

Definition 7 (Structure-Preserving Pseudorandom Function). A function family F : SK×
X→Y is called a pseudorandom function if there are probabilistic polynomial-time algorithms
Setup and KeyGen and a deterministic polynomial-time algorithm Comp such that:

– CP
$← Setup(Λ) is an algorithm that takes as input a Λ and outputs the common param-

eters CP .
– SK

$← KeyGen(CP) is an algorithm that takes as input CP and outputs a (secret) key
SK ∈ SK.

– Y ← Comp(X,SK ) is a deterministic algorithm that takes as input X ∈ X and SK ∈
SK and outputs the function value Y = FSK (X) ∈ Y .

It is structure-preserving if X and Y are in {G1,G2}∗ and if the relation defined by Y =
Comp(X,SK ), where X and Y form the statement and SK is a witness, can be represented
by PPEs (when SK is in {G1,G2}∗) or MSEs (when SK is in {Zp,G1,G2}∗).

Definition 8 (Pseudorandomness of Pseudorandom Function). For all probabilistic polynomial-
time distinguishers D = (D1,D2) we have

Pr


CP

$← Setup(Λ) ; SK
$← KeyGen(CP) ;

(X, st)← D1
Comp(·,SK )(CP) ;

Y0 ← FSK (X) ; Y1
$← Y ; b

$← {0, 1} ;
b′

$← D2
Comp(·,SK )(Yb, st)

∣∣∣∣∣∣∣∣∣ b = b′ ∧ X /∈ S

 ≤ 1

2
+ negl(λ),

where S is the set of queries to the oracle Comp.

The purpose of using a structure-preserving PRF, for instance, is to show that one knows
some X and SK that results in Y by coupling it with the Groth-Sahai proof system. We show
that a structure-preserving PRF implies a structure-preserving VRF which, however, does not
exists, as discussed in the previous section. More precisely, we argue that a combination of
structure-preserving PRFs with the Groth-Sahai proof system results in a VRF in the CRS
model. To see exactly what property of the GS proof system is used in our construction, we
reformulate it as a structure-preserving commit-then-prove ZK proof system, as done by Escala
and Groth [31], with some adjustments to our context.

Let RG be a relation represented by conjunction and disjunction of PPEs and MSEs with
respect to the groups generated by G. Constants in PPEs or MSEs are statements and satisfying
values assigned to the variables are witnesses. The language LG characterized by RG is a set
of statements for which a witness exists.



16

Definition 9 (Structure-Preserving Non-Interactive Commit-then-Prove Zero-Knowledge
Proof System).

A structure-preserving non-interactive commit-then-prove zero-knowledge proof system for
relationRG consists of the following algorithms.

– CP
$← Setup(Λ): On input of a Λ, it outputs a common parameter CP for the proof

system.
– CRS

$← CrsGen(CP): On input of a CP , it outputs a common reference string CRS .
– (C , R)

$← Commit(CRS ,W ): On input of a CRS and a witness W , it outputs a commit-
ment C and the random coin R used to compute C .

– Π
$← Prove(CRS , S,W,R): On input of a CRS , a statement S, a witness W , and a

randomness R, it generates a zero-knowledge proof Π in which W satisfies S (provided
that this is the case).

– 0/1 ← Verify(CRS , S,Π,C ): On input of a CRS , S, Π , and a C , it outputs 1 or 0
representing acceptance or rejection of Π , respectively.

It is required that CRS ,Π , and C are in {G1,G2}∗, and Verify is done only by group member-
ship testing, group operations, and evaluating PPEs. For any Λ produced by G, (Λ, S,W ) ∈
RG , (C , R) $← Commit(CRS ,W ) and Π $← Prove(CRS , S,W,R), algorithm Verify(CRS ,
S,Π,C) outputs 1. It is composable zero-knowledge if there exists polynomial-time algorithms
SimCrsGen, SimCommit, and SimProve such that

– (CRS , τ)
$← SimCrsGen(CP): On input of a CP , it outputs a CRS and a simulation key

τ ,
– (C , R)

$← SimCommit(CRS , τ): On input of a CRS and τ , it outputs C and R used to
compute C , and

– Π
$← SimProve(CRS , S, τ, R): On input of a CRS , S, τ , and R, it simulates proof Π ,

holds, the distributions of a CRS as produced by CrsGen and SimCrsGen are indistinguish-
able, and the distributions of (Π,C ), with Π output by Prove or SimProve and C by Commit
or SimCommit, are identical for a simulated CRS and (Λ, S,W ) ∈ RG chosen by an adver-
sary with access to τ .

Let PRF = (Setupprf,KeyGenprf,Compprf) be a structure-preserving PRF with respect
to G and NIZK = (Setupnizk,CrsGennizk,Commitnizk,Provenizk,Verifynizk) be a structure-
preserving non-interactive commit-and-prove ZK proof system with respect to G.

Theorem 5. If the discrete logarithm problem is hard in the source groups of Λ generated by
G, and there exists a structure-preserving non-interactive commit-then-prove zero-knowledge
proof system NIZK = (Setupnizk,CrsGennizk,Commitnizk,Provenizk,Verifynizk) with respect
to G whose CrsGennizk, Commitnizk, and Provenizk are algebraic algorithms, then there is no
structure-preserving pseudorandom function PRF = (Setupprf,KeyGenprf,Compprf) whose
KeyGenprf and Compprf are algebraic algorithms with respect to G and is pseudorandom as
defined in Definition 8.

Proof. Suppose that a PRF is a structure-preserving PRF whose KeyGenprf and Compprf are
algebraic algorithms with respect to G and is pseudorandom, as defined in Definition 8. Also
suppose that the NIZK is a structure-preserving non-interactive commit-then-prove ZK proof
system with respect to G whose CrsGennizk, Commitnizk, and Provenizk are algebraic algorithms.
From such PRF and NIZK , we construct a structure-preserving VRF whose KeyGen and
Comp are algebraic algorithms, and that is pseudorandom.



17

– CP
$← Setup(Λ): CPprf

$← Setupprf(Λ), CPnizk
$← Setupnizk(Λ), CP := (CPprf,CPnizk).

– (PK ,SK )
$← KeyGen(CP):SK prf

$← KeyGenprf(CPprf), CRS
$← CrsGennizk(CPnizk),

(C,R)
$← Commitnizk(CRS ,SK prf), SK := (SK prf, R,CRS ), PK := (C,CRS ). Re-

turn (PK ,SK ).
– Y ← Comp(X,SK ): (SK prf, R,CRS )← SK . Y ← Compprf(X,SK prf). Return Y .

– Π
$← Prove(X,SK ) : Parse (SK prf, R,CRS ) ← SK and compute Y ← Compprf(X,

SK prf). Then output Π $← Provenizk(CRS , (X,Y ),SK prf, R).
– 0/1← Verify(X,Y,PK , Π) : Parse (C,CRS )← PK . Run b← Verifynizk(CRS , (X,Y ),
Π,C) and return b.

Syntactical consistency as a VRF can be verified by inspection. Its KeyGen, Comp, and
Prove algorithms are algebraic with respect to G because KeyGenprf, Compprf, CrsGennizk,
Commitnizk, and Provenizk are all algebraic. It is structure-preserving since PK consists of C
and CRS in {G1,G2}∗, X , Y , and Π are also in {G1,G2}∗, and Verify only calls Verifynizk
that meets the requirements.

Provability holds from the correctness of the NIZK , as Verify is identical to Verifynizk.
Uniqueness holds due to the soundness of the NIZK and the fact that Compprf is determin-
istic. Namely, if (SK , X, Y ) satisfies relation Y = Compprf(X,SK ), then Y 6= Y ′ does not
satisfy Y ′ = Compprf(X,SK ) since Compprf is deterministic. Thus, by the soundness of the
NIZK, there is no Π ′ that is accepted by the verification algorithm for (SK , X, Y ′). The pseu-
dorandomness holds due to the pseudorandomness of the PRF , as in Definition 8, and the
composable ZK property of NIZK .

Such a structure-preserving VRF contradicts Theorem 4. Since the GS proof system in-
stantiates the above NIZK under standard assumptions 1, we can conclude that a structure-
preserving PRF cannot exist.

�

3.4 Impossibility Results for Structure-Preserving Deterministic Encryption

Deterministic encryption was introduced by Bellare, Boldyreva, and O’Neill [10]. Here we
provide their definition of DE, adopted to the structure-preserving setting.

Definition 10 (Structure-Preserving Deterministic Encryption). A structure-preserving de-
terministic encryption scheme with respect to G consists of the following algorithms.

– CP
$← Setup(Λ) is an algorithm that takes as input a Λ and outputs common parameters

CP which define PK, X , and Y .
– (PK ,SK )

$← KeyGen(CP) is a probabilistic key generation algorithm that takes as input
CP and outputs a public key PK ∈ PK and a secret key SK . PK is included in or
uniquely computable from SK .

– Y ← Enc(X,PK ) is a deterministic algorithm that takes as input a plaintext X ∈ X and
a PK and outputs a ciphertext Y ∈ Y .

– X ← Dec(Y,SK ) is a deterministic algorithm that takes as input a Y ∈ Y and a SK and
outputs a plaintext X ∈ X .

1 If the correctness relation for Compprf is given by MSEs, an accompanying GS-proof may contain
scalar values [38]. However, they then can be turned into source group elements simply by lifting
them up on the CRS as bases so that the output of Prove consists only of source group elements.



18

It is required that X = Dec(Enc(X,PK ),SK ) holds for all X ∈ X and all pairs (PK ,SK )
computed legitimately by Λ← G(1λ), CP ← Setup(Λ), (PK ,SK )← KeyGen(CP).

It is structure-preserving with respect to encryption if additionally PK, X , and Y ⊂
{G1,G2}∗, and the relation Y ← Enc(X,PK ), where Y and PK form the statement and
X is a witness, can be represented by PPEs. Similarly, it is structure-preserving with respect
to decryption if additionally the relationX ← Dec(Y,SK ), whereX and Y form the statement
and SK is a witness, can be represented by PPEs or MSEs.

Intuitively, the security notion for DE states that the adversary should not be able to distin-
guish ciphertexts that correspond to messages that come from two message distributions with
high min-entropy. We present below the IND security definition for deterministic encryption
schemes [11].

Definition 11 (IND Security for Deterministic Encryption). Let ΣDE = (Setup,KeyGen,
Enc,Dec) be a deterministic encryption scheme. Let A = (A1, A2, A3) be a probabilistic
polynomial-time adversary. We say that A is a legitimate adversary if A2 on input (Λ, st)
outputs two vectors of messages, X0 and X1, such that the vectors have a fixed number of
messages without duplication, and for all unbounded predictors P

Pr
[
(st,X)

$← P (Λ) ; (X)
$← A2(Λ, st)

∣∣∣ ∃i : X[i] = X
]
≤ negl(λ),

The deterministic encryption scheme ΣDE is IND-secure if for all legitimate probabilistic
polynomial-time adversaries A = (A1, A2, A3)

Pr

 st
$← A1(Λ) ; (X0)

$← A2(Λ, st) ; (X1)
$← A2(Λ, st) ;

CP
$← Setup(Λ) ; (PK ,SK )

$← KeyGen(CP) ; b
$← {0, 1} ;

C← Enc(Xb,PK ) ; b′
$← A3(CP ,PK ,C, Λ, st)

∣∣∣∣∣∣∣ b = b′

 ≤ 1

2
+negl(λ),

where the encryption is done element-wise.

Theorem 6. Assuming the hardness of the discrete logarithm problem in the base groups of
Λ ∈ G, there is no IND-secure deterministic encryption scheme that is structure-preserving
with respect to encryption.

Note that being structure-preserving with respect to Enc implies that Enc is algebraic. (It is
generic, in fact.) To prove Theorem 6, we actually prove Lemma 5 that states a slightly stronger
result that there is no structure-preserving DE protecting any kind of secrecy of plaintexts.

Lemma 5. Assuming the hardness of the discrete logarithm problem in the base groups of
Λ ∈ G, any structure-preserving deterministic encryption scheme with respect to encryption,
whose KeyGen and Enc are algebraic with respect to G, allows decryption only with the public-
key.

Proof. Let ΣDE = (Setupde,KeyGende,Encde,Decde) be a structure-preserving DE scheme
whose KeyGen and Enc are algebraic with respect to G. We construct a provable structure-
preserving deterministic primitive ΣSPDP from ΣDE as follows.

– CP
$← Setup(Λ): CP $← Setupde(Λ).

– (PK ,SK )
$← KeyGen(CP): (SK ,PK )

$← KeyGende(CP).
– Y ← Comp(X,SK ): Derive PK from SK , and run Y ← Encde(X,PK ). Return Y .



19

– Π
$← Prove(X,SK ) : Return a constant in {G1,G2}∗ as Π .

– 0/1← Verify(X,Y,Π,PK ) : Return 1 if Y = Encde(X,PK ). Return 0, otherwise.

We verify that the above constitute anΣSPDP according to Definition 2. Syntactical consis-
tency can be verified by inspection. We focus on the security properties. First, it is structure-
preserving since PK , X , Y , Π are in {G1,G2}∗ and Verify only evaluates Enc of ΣDE that
meets the requirement. Provability and uniqueness hold trivially from the fact that Enc is de-
terministic.

We now note that the above SPDP is not unpredictable because Comp essentially uses PK
instead of SK . Nevertheless, according to Lemma 1 (the conditions required in the lemma are
satisfied here as we assume the hardness of the discrete logarithm problem in Λ and KeyGende
and Encde are algebraic), the ciphertext that encrypts a group element X looks as follows:
Comp(X,SK ) = Encde(X,PK ) = Y = (Ga1Xb1 , . . . , Ga`Xb`), where a1, . . . , a`, b1, . . . , b`
are constants in Zp, and G is a group generator. Since Enc is an encryption algorithm, Gai and
bi, i = 1, . . . , ` should be efficiently computable from the PK . Hence, the plaintext X can be
recovered solely by using the PK .

�

We note that SPDE with respect to decryption exists in the random oracle model. The
following is a modification of the encrypt-then-hash deterministic encryption scheme of Bel-
lare et al. [10]. Consider a deterministic variant of ElGamal encryption scheme whose secret-
key is x ∈ Zp and public-key is Y = Gx1 . It encrypts message M ∈ G1 into (C1, C2) =

(M · Y H(Y ‖M), G
H(Y ‖M)
1 ), and decrypts by C1/C

x
2 without checking the well formness of

the ciphertext. The scheme is IND-secure in the random oracle model under the SXDH as-
sumption (but obviously not secure against chosen ciphertext attacks) and structure-preserving
with respect to decryption since the relation determined by the decryption can be verified by
two MSEs C1/C

x
2 = M and Y = Gx where (x,M) is the witness. By coupling it with the

GS proof system, one can prove one’s knowledge of the correct decryption of the ciphertext.
It would however be of limited use since the result of decryption must not be revealed. Never-
theless, it is a rare example that uses a hash function but remains structure-preserving.

4 Conclusion

We proved that it is impossible to construct algebraic structure-preserving VRFs, VUFs, USigs,
PRFs, and DE schemes. We further extend our results to “non-strictly” structure-preserving
primitives, which are allowed to have target group elements in their public keys and ranges.
Although our results are restricted to the class of algebraic algorithms, all known constructions
of structure-preserving primitives consist of algebraic algorithms. Finding constructions of se-
cure structure-preserving algorithms that allow non-algebraic operations but whose correctness
of computation still can be verified using a system of PPEs is an interesting open problem. Fi-
nally, we note that deterministic primitives might exist in a restricted form, where only one
query to the oracle is allowed.

Acknowledgments

The authors would like to thank Kristiyan Haralambiev for the useful discussions and the
anonymous reviewers for their helpful comments and suggestions. The research leading to



20

these results was supported in part by the European Community’s Seventh Framework Pro-
gramme for the projects ABC4Trust (grant agreement no. 257782) and PERCY (grant agree-
ment no. 321310).

References

1. Michel Abdalla, Dario Catalano, and Dario Fiore. Verifiable random functions from identity-based
key encapsulation. In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT 2009, 28th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Cologne, Germany, April 26-30, 2009. Proceedings, volume 5479 of Lecture Notes in Computer
Science, pages 554–571. Springer, 2009. (Cited on page 2.)

2. Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and Miyako
Ohkubo. Constant-size structure-preserving signatures: Generic constructions and simple assump-
tions. Journal of Cryptology, 2015. (Cited on page 2.)

3. Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo.
Structure-preserving signatures and commitments to group elements. Journal of Cryptology, 2015.
(Cited on page 2, 11, 13.)

4. Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. Optimal structure-
prserving signatures in asymmetric bilinear groups. In Advances in Cryptology — CRYPTO ’11,
LNCS. Springer-Verlag, 2011. (Cited on page 2, 3.)

5. Masayuki Abe, Kristiyan Haralambiev, and Miyako Ohkubo. Group to group commitments do not
shrink. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology - EURO-
CRYPT 2012 - 31st Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237 of Lecture Notes
in Computer Science, pages 301–317. Springer, 2012. (Cited on page 2, 3.)

6. Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. Non-interactive anony-
mous credentials. In Ran Canetti, editor, Theory of Cryptography, Fifth Theory of Cryptography
Conference, TCC 2008, volume 4948 of LNCS. Springer-Verlag, 2008. Also available on IACR
ePrint Archive, 2007/384. (Cited on page 1, 2.)

7. Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. Compact e-cash and
simulatable vrfs revisited. In Hovav Shacham and Brent Waters, editors, Pairing-Based Cryptog-
raphy - Pairing 2009, Third International Conference, Palo Alto, CA, USA, August 12-14, 2009,
Proceedings, volume 5671 of Lecture Notes in Computer Science, pages 114–131. Springer, 2009.
(Cited on page 2, 15.)

8. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal definitions,
simplified requirements and a construction based on general assumptions. In E. Biham, editor, Ad-
vances in Cryptology - EUROCRPYT ’03, volume 2656 of LNCS, pages 614–629, 2003. (Cited on
page 1.)

9. M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round zero-knowledge
protocols. In M. Franklin, editor, Advances in Cryptology — CRYPTO 2004, volume 3152 of LNCS,
pages 273–289. Springer-Verlag, 2004. (Cited on page 4.)

10. Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently searchable
encryption. In Alfred Menezes, editor, Advances in Cryptology - CRYPTO 2007, 27th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007, Proceedings,
volume 4622 of Lecture Notes in Computer Science, pages 535–552. Springer, 2007. (Cited on
page 17, 19.)

11. Mihir Bellare, Marc Fischlin, Adam O’Neill, and Thomas Ristenpart. Deterministic encryption: Def-
initional equivalences and constructions without random oracles. In David Wagner, editor, Advances
in Cryptology - CRYPTO 2008, 28th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 17-21, 2008. Proceedings, volume 5157 of Lecture Notes in Computer Science,
pages 360–378. Springer, 2008. (Cited on page 2, 18.)



21

12. Alexandra Boldyreva, Serge Fehr, and Adam O’Neill. On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In David Wagner, editor, Advances in
Cryptology - CRYPTO 2008, 28th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2008. Proceedings, volume 5157 of Lecture Notes in Computer Science, pages
335–359. Springer, 2008. (Cited on page 2.)

13. Jan Camenisch, Maria Dubovitskaya, and Kristiyan Haralambiev. Efficient structure-preserving sig-
nature scheme from standard assumptions. In SCN, volume 7485 of LNCS, pages 76–94. Springer,
2012. (Cited on page 2.)

14. Jan Camenisch, Maria Dubovitskaya, and Gregory Neven. Oblivious transfer with access control. In
Ehab Al-Shaer, Somesh Jha, and Angelos D. Keromytis, editors, Proceedings of the 2009 ACM Con-
ference on Computer and Communications Security, CCS 2009, Chicago, Illinois, USA, November
9-13, 2009, pages 131–140. ACM, 2009. (Cited on page 2.)

15. Jan Camenisch, Maria Dubovitskaya, Gregory Neven, and Gregory M. Zaverucha. Oblivious transfer
with hidden access control policies. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio
Nicolosi, editors, Public Key Cryptography - PKC 2011 - 14th International Conference on Practice
and Theory in Public Key Cryptography, Taormina, Italy, March 6-9, 2011. Proceedings, volume
6571 of Lecture Notes in Computer Science, pages 192–209. Springer, 2011. (Cited on page 1.)

16. Jan Camenisch, Kristiyan Haralambiev, Markulf Kohlweiss, Jorn Lapon, and Vincent Naessens.
Structure preserving cca secure encryption and applications. In Advances in Cryptology – Asiacrypt
2011, LNCS. Springer-Verlag, 2011. (Cited on page 2.)

17. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In Ronald Cramer,
editor, Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Pro-
ceedings, volume 3494 of Lecture Notes in Computer Science, pages 302–321. Springer, 2005. (Cited
on page 1, 2.)

18. Jan Camenisch, Aggelos Kiayias, and Moti Yung. On the portability of generalized schnorr proofs.
In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT 2009, 28th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cologne, Germany, April
26-30, 2009. Proceedings, volume 5479 of Lecture Notes in Computer Science, pages 425–442.
Springer, 2009. (Cited on page 1.)

19. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In Birgit Pfitzmann, editor, Advances in Cryptology -
EUROCRYPT 2001, International Conference on the Theory and Application of Cryptographic Tech-
niques, Innsbruck, Austria, May 6-10, 2001, Proceeding, volume 2045 of Lecture Notes in Computer
Science, pages 93–118. Springer, 2001. (Cited on page 1.)

20. Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In Stelvio
Cimato, Clemente Galdi, and Giuseppe Persiano, editors, Security in Communication Networks,
Third International Conference, SCN 2002, Amalfi, Italy, September 11-13, 2002. Revised Papers,
volume 2576 of Lecture Notes in Computer Science, pages 268–289. Springer, 2002. (Cited on
page 1.)

21. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear
maps. In Matthew K. Franklin, editor, Advances in Cryptology - CRYPTO 2004, 24th Annual Inter-
national CryptologyConference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings,
volume 3152 of Lecture Notes in Computer Science, pages 56–72. Springer, 2004. (Cited on page 1.)

22. Jan Camenisch, Gregory Neven, and Abhi Shelat. Simulatable adaptive oblivious transfer. In Moni
Naor, editor, Advances in Cryptology - EUROCRYPT 2007, 26th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Barcelona, Spain, May 20-24, 2007,
Proceedings, volume 4515 of Lecture Notes in Computer Science, pages 573–590. Springer, 2007.
(Cited on page 2.)

23. Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete loga-
rithms. In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume
2729 of Lecture Notes in Computer Science, pages 126–144. Springer, 2003. (Cited on page 1.)



22

24. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Pro-
ceedings of the 42nd IEEE Annual Symposium on Foundations of Computer Science, pages 136–145,
2001. (Cited on page 2.)

25. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. In Proceedings
of the 30th Annual ACM Symposium on Theory of Computing, pages 209–218, 1998. (Cited on
page 2.)

26. Melissa Chase and Anna Lysyanskaya. Simulatable vrfs with applications to multi-theorem NIZK. In
Alfred Menezes, editor, Advances in Cryptology - CRYPTO 2007, 27th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 19-23, 2007, Proceedings, volume 4622 of
Lecture Notes in Computer Science, pages 303–322. Springer, 2007. (Cited on page 2, 15.)

27. R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003. (Cited
on page 1.)

28. Yevgeniy Dodis. Efficient construction of (distributed) verifiable random functions. In Yvo Desmedt,
editor, Public Key Cryptography - PKC 2003, 6th International Workshop on Theory and Practice
in Public Key Cryptography, Miami, FL, USA, January 6-8, 2003, Proceedings, volume 2567 of
Lecture Notes in Computer Science, pages 1–17. Springer, 2003. (Cited on page 2.)

29. Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and
keys. In Serge Vaudenay, editor, Public Key Cryptography - PKC 2005, 8th International Workshop
on Theory and Practice in Public Key Cryptography, Les Diablerets, Switzerland, January 23-26,
2005, Proceedings, volume 3386 of Lecture Notes in Computer Science, pages 416–431. Springer,
2005. (Cited on page 1, 2.)

30. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
G. R. Blakley and D. Chaum, editors, Advances in Cryptology — CRYPTO ’84, volume 196 of LNCS,
pages 10–18. Springer-Verlag, 1985. (Cited on page 1.)

31. Alex Escala and Jens Groth. Fine-tuning groth-sahai proofs. In Hugo Krawczyk, editor, Public-Key
Cryptography - PKC 2014 - 17th International Conference on Practice and Theory in Public-Key
Cryptography, Buenos Aires, Argentina, March 26-28, 2014. Proceedings, volume 8383 of Lecture
Notes in Computer Science, pages 630–649. Springer, 2014. (Cited on page 15.)

32. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In A. M. Odlyzko, editor, Advances in Cryptology — CRYPTO ’86, volume 263 of LNCS,
pages 186–199. Springer-Verlag, 1987. (Cited on page 2.)

33. Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and oblivious
pseudorandom functions. In Joe Kilian, editor, Theory of Cryptography, Second Theory of Cryptog-
raphy Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings, volume
3378 of Lecture Notes in Computer Science, pages 303–324. Springer, 2005. (Cited on page 2.)

34. Steven D. Galbraith, Kenneth G. Peterson, and Nigel P. Smart. Pairings for cryptographers. Discrete
Applied Mathematics, 156(16):3113–3121, 2008. (Cited on page 6.)

35. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the
ACM, 33(4):792–807, October 1986. (Cited on page 2.)

36. Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir paradigm. In 44th
Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge,
MA, USA, Proceedings, pages 102–113. IEEE Computer Society, 2003. (Cited on page 2.)

37. Shafi Goldwasser and Rafail Ostrovsky. Invariant signatures and non-interactive zero-knowledge
proofs are equivalent (extended abstract). In Ernest F. Brickell, editor, Advances in Cryptology -
CRYPTO ’92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 16-20, 1992, Proceedings, volume 740 of Lecture Notes in Computer Science, pages 228–
245. Springer, 1992. (Cited on page 2.)

38. Jens Groth and Amit Sahai. Efficient noninteractive proof systems for bilinear groups. SIAM J.
Comput., 41(5):1193–1232, 2012. (Cited on page 2, 3, 17.)

39. Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern matching with
security against malicious and covert adversaries. In Ran Canetti, editor, Theory of Cryptography,
Fifth Theory of Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008., volume
4948 of Lecture Notes in Computer Science, pages 155–175. Springer, 2008. (Cited on page 2.)



23

40. Dennis Hofheinz and Tibor Jager. Tightly secure signatures and public-key encryption. In CRYPTO,
volume 7417 of LNCS, pages 590–607. Springer, 2012. (Cited on page 2.)

41. Susan Hohenberger and Brent Waters. Constructing verifiable random functions with large input
spaces. In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, 29th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, French Riviera,
May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science, pages
656–672. Springer, 2010. (Cited on page 2.)

42. Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In Omer Reingold, editor, Theory of
Cryptography, 6th Theory of Cryptography Conference, TCC 2009, San Francisco, CA, USA, March
15-17, 2009. Proceedings, volume 5444 of Lecture Notes in Computer Science, pages 577–594.
Springer, 2009. (Cited on page 2.)

43. Stanislaw Jarecki and Vitaly Shmatikov. Handcuffing big brother: an abuse-resilient transaction
escrow scheme. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EU-
ROCRYPT 2004, International Conference on the Theory and Applications of Cryptographic Tech-
niques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes in Com-
puter Science, pages 590–608. Springer, 2004. (Cited on page 2.)

44. Aggelos Kiayias and Moti Yung. Group signatures with efficient concurrent join. In R. Cramer, edi-
tor, Advances in Cryptology — EUROCRYPT 2005, volume 3494 of LNCS, pages 198–214. Springer-
Verlag, 2005. (Cited on page 1.)

45. Moses Liskov. Updatable zero-knowledge databases. In Bimal K. Roy, editor, Advances in Cryptol-
ogy - ASIACRYPT 2005, 11th International Conference on the Theory and Application of Cryptology
and Information Security, Chennai, India, December 4-8, 2005, Proceedings, volume 3788 of Lec-
ture Notes in Computer Science, pages 174–198. Springer, 2005. (Cited on page 2.)

46. Anna Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH sepa-
ration. In Moti Yung, editor, Advances in Cryptology - CRYPTO 2002, 22nd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 18-22, 2002, Proceedings, volume
2442 of Lecture Notes in Computer Science, pages 597–612. Springer, 2002. (Cited on page 2, 13.)

47. Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In 40th Annual
Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY,
USA, pages 120–130. IEEE Computer Society, 1999. (Cited on page 2.)

48. Silvio Micali and Leonid Reyzin. Soundness in the public-key model. In Joe Kilian, editor, Advances
in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara,
California, USA, August 19-23, 2001, Proceedings, volume 2139 of Lecture Notes in Computer
Science, pages 542–565. Springer, 2001. (Cited on page 2.)

49. Silvio Micali and Ronald L. Rivest. Micropayments revisited. In Bart Preneel, editor, Topics in
Cryptology - CT-RSA 2002, The Cryptographer’s Track at the RSA Conference, 2002, San Jose, CA,
USA, February 18-22, 2002, Proceedings, volume 2271 of Lecture Notes in Computer Science, pages
149–163. Springer, 2002. (Cited on page 2.)

50. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
J. Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, volume 576 of LNCS, pages 129–
140. Springer-Verlag, 1992. (Cited on page 1.)

51. C. P. Schnorr. Efficient signature generation for smart cards. Journal of Cryptology, 4(3):239–252,
1991. (Cited on page 1.)


