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Abstract—In the bounded storage model the memory of the
adversarial parties is restricted, instead of their computational
power. This different restriction allows the construction of proto-
cols with information-theoretical (instead of only computational)
security. We present the first protocol for oblivious transfer in the
bounded storage model with errors, i.e., where the public random
sources available to the two parties are not exactly the same,
but instead are only required to have a small Hamming distance
between themselves, and the memory of the (adversarial) receiver
is limited. Oblivious transfer protocols were known previously
only for the error-free variant of the bounded storage model,
which is harder to realize.

I. INTRODUCTION

Oblivious transfer (OT) protocols are fundamental building
blocks of secure two- and multi-party computation protocols.
OT is a two-party protocol in which Alice inputs two strings
s0 and s1, and Bob inputs a bit c. Bob’s output is the string sc.
The protocol is called secure if Alice never learns the choice
bit c and Bob does not learn any information about s1−c. It
can be used to realize any secure two-party computation [1].

In the setting where the parties only communicate through
noiseless channels, unconditionally secure OT is impossible
(even if quantum channels are available [2]). However, it is
possible to realize it in the context of computational security
(in which the adversaries are restricted to be polynomial-time
Turing machines), as long as computational hardness assump-
tions are made. OT can be obtained using generic assumptions
such as the existence of dense trapdoor permutations [3]
or assuming the hardness of many specific computational
problems [4], [5], [6], [7], [8]. One possibility to obtain
unconditional secure OT is resorting to physical assumptions
such as the existence of noisy channels [9].

In this paper a different setting is considered, the so called
bounded storage model (BSM) [10], in which the adversary is
assumed to have bounded memory. In the BSM, it is assumed
that both parties have access to a public random source, and
that a dishonest party cannot store the whole source.

A. The Bounded Storage Model

Many cryptographic tasks can be implemented in the BSM.
Cachin and Maurer [11] proposed a key agreement protocol
in which the parties have a small pre-shared key and also a

protocol for key agreement by public discussion (i.e., without
a pre-shared key) that requires

√
n samples from the source

and is thus less practical. The first OT protocol was obtained
by Cachin et al. [12]. Improvements (in a slightly different
model) were presented by Ding [13] and Hong et al. [14].
Ding et al. [15] obtained the first constant-round OT protocol.

Unfortunately the bounded storage model assumes that there
exists a random source that can be reliably broadcasted to all
parties, without errors in the transmission, and this is hard to
realize in practice. Our goal with this work is to study two-
party protocols under more realistic assumptions.

B. Our contribution

In this work, a more general variant of the BSM is consid-
ered, in which errors can be introduced in the public random
source in arbitrary positions. It is only assumed that the
fraction of errors, relative to the length of the public string,
is not too large. This captures both adversarially introduced
errors and natural ones. This model was previously studied by
Ding [16], who defined a general paradigm for randomness
extraction schemes and showed how to incorporate error cor-
rection in key agreement protocols by using fuzzy extractors.

We propose the first protocol for oblivious transfer in this
model, thus showing that any multi-party computation protocol
can be realized. Our protocol is similar to the one by Ding et
al. [15], but uses error correction (i.e., a fuzzy extractor) to
ensure correctness.

II. PRELIMINARIES

The probability distribution of a random variable X will be
denoted by PX . The set {1, . . . , n} will be written as [n]. If
x = (x1, . . . , xn) is a sequence and S = {s1, . . . , st} ⊆ [n],
xS denotes the sequence (xs1 , . . . , xst). u

$← U denotes that u
is drawn from the uniform distribution over the set U and Ur
is the uniformly-distributed r-bit random variable. y $← F(x)
denotes the act of running the probabilistic algorithm F with
input x and obtaining the output y. y ← F(x) is similarly
used for deterministic algorithms.

HD(X,Y ) denotes the hamming distance between X and
Y , and X ⊕ Y their bitwise exclusive or. H(X) denotes the
entropy of X and I(X;Y ) the mutual information between X



and Y . The logarithms are in the base 2 and the binary entropy
function is denoted by h. ‖PX − PY ‖ denotes the statistical
distance between PX and PY .

A. Entropy Measures

The main entropy measure in this work is the smooth
min-entropy. The min-entropy captures the notion of unpre-
dictability of a random variable (i.e., the extractable private
randomness from the variable X , given the correlated random
variable Y possessed by an adversary), but has the problem of
being sensitive to small changes in the probability distribution.
Due to this fact, smooth min-entropy [17] will be used.

Definition 1 (Smooth min-entropy): Let ε > 0 and PXY be
a probability distribution. The ε-smooth min-entropy of X
given Y is defined by

Hε
∞(X|Y ) = max

X′Y ′:‖PX′Y ′−PXY ‖≤ε
H∞(X ′|Y ′)

where H∞(X | Y ) = miny∈Y minx∈X (− logPX|Y=y(x)).
Intuitively, the smooth min-entropy is the maximum min-
entropy in the neighborhood of the probability distribution.
Analogues of the chain rule for conditional Shannon en-
tropy were establish for smooth min-entropy by Renner and
Wolf [17]. X is called a k-source if H∞(X) ≥ k.

Definition 2 (Min-entropy rate): Let X be a random vari-
able with an alphabet X , E a random variable E and ε ≥ 0.
The min-entropy rate is defined as Rε∞(X | E) =

Hε
∞(X|E)
log |X | .

The following lemma is a restatement of a lemma in [15]
and is what makes the bounded assumption useful: it says that
a source with high min-entropy rate also has high min-entropy
rate when conditioned on a correlated short string.

Lemma 1: Let X ∈ {0, 1}n such that Rε∞(X) ≥ ρ and Y
be a random variable over {0, 1}φn. Fix ε′ > 0. Then

Rε
′+
√

8ε
∞ (X | Y ) ≥ ρ− φ− 1 + log(1/ε′)

n
.

Proof: Let ψ = ρ−φ− 1+log(1/ε′)
n . By lemma 3.16 in [15]

we have that if Rε∞(X) ≥ ρ then

Pr
y

$←Y

[
R
√

2ε
∞ (X | Y = y) ≥ ψ

]
≥ 1− ε′ −

√
2ε.

Let G = {y ∈ Y | R
√

2ε
∞ (X | Y = y) ≥ ψ}. Let P ′XY be

the distribution that is
√
2ε-close to PXY and is such that

P ′(X = x | Y = y) ≤ 2−ψn for any x ∈ X , y ∈ G. Let P ′′XY
be obtained by letting P ′′(X | Y = y) = P ′(X | Y = y)
for y ∈ G and defining P ′′(X = x | Y = y) = 2−n for
any x ∈ X , y /∈ G. As Pr [G ] ≥ 1 − ε′ −

√
2ε, it holds that

‖P ′′XY −P ′XY ‖ ≤ ε′+
√
2ε and so ‖P ′′XY −PXY ‖ ≤ ε′+2

√
2ε.

Since P ′′(X = x | Y = y) ≤ 2−ψn for every x ∈ X , y ∈ Y ,
the lemma follows.

B. Averaging Samplers and Randomness Extractors

In the bounded storage model a typical approach for the
usage of the source is the sample-then-extact paradigm, in
which first some positions of the source are sampled and
then an extractor is applied on these positions. Due to the

infeasibility of storing the whole source string, any extractor
should be locally computable [18]. In this context, averaging
samplers are a fundamental tool. They produce samples such
that the average value of any function applied to the sampled
string is roughly the same as the average when taken over the
original string. Important to this work is the fact that averaging
samplers roughly preserve the min-entropy rate.

Definition 3 (Averaging sampler): A function Samp :
{0, 1}r → [n]t is a (µ, ν, ε)-averaging sampler if for every
function f : [n]→ [0, 1] with average

∑n
i=1 f(i)

n ≥ µ:

Pr
S $←Samp(Ur)

[
1

t

∑
i∈S

f(i) ≤ µ− ν

]
≤ ε.

Lemma 2 ([18]): Let X ∈ {0, 1}n be such that R∞(X |
E) ≥ ρ. Let τ be such that 1 ≥ ρ ≥ 3τ > 0 and
Samp : {0, 1}r → [n]t be an (µ, ν, ε)-averaging sampler
with distinct samples for µ = (ρ − 2τ)/ log(1/τ) and ν =

τ/ log(1/τ). Then for S $← Samp(Ur) and ε′ = ε+ 2−Ω(τn)

Rε
′

∞(XS | S, E) ≥ ρ− 3τ.

The (n, t)-random subset sampler picks a random subset of
[n] of size t. It is an averaging sampler.

Lemma 3: Let 0 < t < n. For any µ, ν > 0, the (n, t)-
random subset sampler is a (µ, ν, e−tν

2/2)-averaging sampler.
Proof: It is just a restatement of Lemma 5.5 in [19].

A randomness extractor is a function that takes a string with
high min-entropy as an input and outputs a string that is close
(in the statistical distance sense) to a uniformly distributed
string. The OT protocol presented in this work will use a
variant of a strong extractor, called a fuzzy extractor [20].
Intuitively, fuzzy extractors are noise-resilient extractors, that
is, extractors such that the extracted string can be reproduced
by any party with a string that is close (in the Hamming
distance sense) to the original source.

Definition 4 (Fuzzy extractor): A pair of functions Ext :
{0, 1}n × {0, 1}r → {0, 1}m × {0, 1}p, Rec : {0, 1}n ×
{0, 1}r × {0, 1}p → {0, 1}m is a (k, ε, δ, β)-fuzzy extractor
if:
• (Security) For every k-source X ∈ {0, 1}n, let R $← Ur,

(Y, P )← Ext(X,R). Then ‖PY RP −PUm
×PRP ‖ ≤ ε.

• (Recovery) For every X,X ′ ∈ {0, 1}n such that
HD(X,X ′) ≤ δn, let R $← Ur, (Y, P ) ← Ext(X,R).
It should hold that Pr [Rec(X ′, R, P ) = Y ] ≥ 1− β.

Since there is a restriction to close strings with respect to the
Hamming distance, syndrome-based fuzzy extractors can be
used, as summarized in the following lemma from Ding [16].

Lemma 4 ([16]): Let 1 ≥ ρ, ψ, χ > 0 be arbitrary con-
stants. There is a constant δ > 0 such that for every sufficiently
large n ∈ N, and every ε > e−n/2

O(log∗ n)

, there is an ex-
plicit construction of a (ρn, ε, δ, 0)-fuzzy extractor (Ext,Rec),
where Ext : {0, 1}n × {0, 1}r → {0, 1}m × {0, 1}p with
m = (1− ψ)ρn, r = O(log n+ log(1/ε)) and p ≤ χm.

The following lemma shows that random subsets of two sets
X and Y have relative Hamming distances that are close to
the one between X and Y .



Lemma 5: Let X,Y ∈ {0, 1}n, S be a random subset of
[n] of size r and consider any ν ∈ [0, 1]. On one hand, if
HD(X,Y ) ≤ δn, then HD(XS , Y S) < (δ + ν)r except with
probability e−rν

2/2. On the other hand, if HD(X,Y ) ≥ δn,
then HD(XS , Y S) > (δ−ν)r except with probability e−rν

2/2.
Proof: Lets begin with the first part of the Lemma. By

Lemma 3, a random subset sampler is an (µ, ν, e−rν
2/2)-

averaging sampler for any µ, ν > 0. Let f(i) be defined
as 0 if Xi 6= Yi, and 1 otherwise. Fix µ = 1 − δ. Note
that 1

|S|
∑
i∈S f(i) = 1 − HD(XS ,Y S)

r and 1
n

∑n
i=1 f(i) =

1− HD(X,Y )
n ≥ µ. Due to the properties of averaging samplers

e−rν
2/2 ≥ Pr

[
1

|S|
∑
i∈S

f(i) ≤ µ− ν

]

= Pr

[
1− HD(XS , Y S)

r
≤ 1− δ − ν

]
= Pr

[
HD(XS , Y S) ≥ (δ + ν)r

]
which proves the first part of the Lemma. The second part
uses the same idea, but now f(i) = 0 iff Xi = Yi.

The following statement of the birthday paradox is standard.
Lemma 6 ([13]): Let A,B ⊂ [n], chosen independently at

random, with |A| = |B| = 2
√
`n. Then

Pr[|A ∩B| < `] < e−`/4.

C. Interactive Hashing and Binary Encoding of Subsets

The oblivious transfer protocol proposed in this paper uses
interactive hashing as a subprotocol. Initially introduced in the
context of computationally-secure cryptography [21], interac-
tive hashing was later generalized to the information-theoretic
setting, and is particularly useful in the context of oblivious
transfer protocols [12], [15], [22], [23]. It is a protocol where
Bob inputs a string W and Alice and Bob output two strings
W0,W1, in such a way that one of the output strings is equal
to W , and the other string is completely random from Bob’s
point of view, even if he is dishonest. A variety of protocols
for realizing interactive hashing have been proposed [12], [15],
[24]. In this work interactive hashing is used as a black box.

Definition 5 (Interactive hashing): Interactive hashing is a
protocol between two parties, Alice and Bob, in which Bob
inputs W ∈ {0, 1}m and Alice inputs nothing, and both parties
output W0,W1 ∈ {0, 1}m, in lexicographic order, such that
Wd = W for some d ∈ {0, 1}. The protocol is called an
η-uniform (t, θ)-secure interactive hashing protocol if: (1) If
both parties are honest, then W1−d is η-close to completely
random, (2) Alice’s view of the protocol is independent of d,
and (3) for any T ⊂ {0, 1}m such that |T | ≤ 2t, it should
hold that Pr[W0,W1 ∈ T ] ≤ θ, where the probability is taken
over the randomness used by Alice and Bob.

Lemma 7 ([15]): Let t,m be positive integers such that t ≥
logm + 2. Then there exists a four-message (2−m)-uniform
(t, 2−(m−t)+O(logm))-secure interactive hashing protocol.

A secure interactive hashing scheme guarantees that one
of the outputs is random; however, in the oblivious transfer
protocols, the two binary strings are not used directly, but as

encodings of subsets. Thus for the protocol to succeed, both
outputs need to be valid encodings of subsets of

(
[n]
`

)
. We use

the ‘dense” encoding of subsets technique that ensures that
most m-bit strings are valid encodings.

Lemma 8 ([15]): Let ` ≤ n, m ≥ dlog
(
n
`

)
e, tm =

b2m/
(
n
`

)
c. Then there exists an injective mapping Fm :

(
[n]
`

)
×

[tm]→ [2m] with | Im(Fm)| > 2m −
(
n
`

)
.

III. OBLIVIOUS TRANSFER IN THE BOUNDED STORAGE
MODEL

A. Security Model
a) Transmission Phase.: Prior to the realization of the

protocols’ main part, a transmission phase is executed. In
this phase, the sender (Alice) has access to an αn-source
X ∈ {0, 1}n and the receiver (Bob) to X̃ ∈ {0, 1}n such that
HD(X, X̃) ≤ δn. Note that this captures both the situation
where the source is noisy and the situation where Alice
controls part of the source. Bob then computes a randomized
function f(X̃) with output size smaller or equal to γn for
γ < α, stores its output and discards X̃ . 1 This is the so
called bounded storage assumption. After that, Alice and Bob
output bits ATP and BTP , respectively, with the value 1 if
they want to continue the protocol and 0 if they want to abort.

The definition of oblivious transfer used is the one pre-
sented in [15]. An oblivious transfer protocol is a protocol
between two players, Alice and Bob, in which Alice inputs
two strings s0, s1 ∈ {0, 1}m and outputs nothing, and Bob
inputs c ∈ {0, 1} and outputs s ∈ {⊥, sc}. In the following,
viewA∗(s0, s1; c) denotes the view of Alice using a strategy
A∗ with honest Bob, and viewB∗(s0, s1; c) denotes the view
of Bob using a strategy B∗ with honest Alice. Bob’s strategy
has bounded storage, but Alice’s strategy can be unbounded.

Intuitively, the protocol is secure for Bob if Alice’s view
does not depend on the choice bit c, and secure for Alice if
Bob cannot obtain any information about s1−c. However this
is tricky to formalize since a malicious Bob can choose to play
with a different bit depending on the public random source and
the messages exchanged before Alice’s secret is used.

In order to have a general definition of security, the main
part of the oblivious transfer protocols is further divided into
two phases: the setup phase, consisting of all the communi-
cation before Alice uses her secrets, and the transfer phase,
which goes up until the point where Bob outputs s. By the end
of the setup phase, Bob must have chosen a bit i, which may be
different from c and can depend on all the messages exchanged
thus far. To guarantee Alice’s security it is thus required that
there is an index i, determined at the setup phase, such that for
any two pairs (s0, s1), (s

′
0, s
′
1) with si = s′i the distributions

of s1−i and s′1−i are close given Bob’s view. Following the
terminology of [15], pairs (s0, s1), (s

′
0, s
′
1) satisfying si = s′i

will be called i-consistent. To account for aborts, it is assumed
that at the end of the setup phase, Alice and Bob output bits
ASP , BSP , respectively, which are 1 if they want to continue.

1In order to achieve security it is not necessary to impose any storage bound
on Alice, but in the proposed protocol an honest Alice stores the same amount
of information as an honest Bob.



b) Security.: A protocol is called (λC , λB , λA)-secure if
it satisfies the following properties:

1) λC-correct: if Alice and Bob are honest, then

Pr[ATP = BTP = ASP = BSP = 1∧s = sc] ≥ 1−λC
2) λB-secure for Bob: for any strategy A∗ used by Alice,

‖{viewA∗(s0, s1; 0)} − {viewA∗(s0, s1; 1)}‖ ≤ λB
3) λA-secure for Alice: for any strategy B∗ used by Bob

with input c, there exists a random variable i, defined
at the end of the setup stage, such that for every two
i-consistent pairs (s0, s1), (s

′
0, s
′
1), we have

‖{viewB∗(s0, s1; c)} − {viewB∗(s′0, s
′
1; c)}‖ ≤ λA

B. An Oblivious Transfer Protocol

The idea of the protocol is that initially both parties samples
some positions from the public random source. Then an inter-
active hashing protocol (with an associated dense encoding) is
used to select two subsets of the positions sampled by Alice.
The input of Bob to the interactive hashing is one subset for
which he has also sampled the public random source in that
positions. The other subset is out of Bob’s control due to the
properties of the interactive hashing protocol. Finally the two
subsets are used as input to a fuzzy extractor in order to obtain
one-time pads. Bob sends one bit indicating which input string
should be xored with which one-time pad. The security for
Alice is guarantee by the fact that one of the subsets is out
of Bob’s control and will have high min-entropy given his
view, thus resulting in a good one-time pad. The security for
Bob follows from the security of the interactive hashing. The
correctness follows from the correctness of the fuzzy extractor.

The protocol is defined below. We assume that in the
transmission phase, an αn-source X ∈ {0, 1}n is available to
Alice, and X̃ ∈ {0, 1}n with HD(X, X̃) ≤ δn is available to
Bob. The security parameter is ` and k is set as k = 2

√
`n. Fix

ε′, ε̂, ξ > 0 and let ρ = α−γ− 1+log(1/ε′)
n . Fix 0 < ζ < 1 and

τ such that ρ3 ≥ τ > 0. Let ε′′ = e−`ν
2/2−2−Ω(τn), where the

last term comes from Lemma 2, and let ε̃ = (ε′+ε′′)1−ζ . It is
assumed that the following functionalities, which are possible
due to the lemmas in Section II, are available to the parties:
• A pair of functions Ext: {0, 1}`×{0, 1}r → {0, 1}mF `×
{0, 1}p and Rec: {0, 1}`×{0, 1}r×{0, 1}p → {0, 1}mF `

that constitutes an (kF `, εF , δ+ξ, 0)-fuzzy extractor with
kF = ρ − 3τ − 2mF − 1+log(1/ε̂)

` and εF negligible in
`. Notice that we should have δ+ ξ in the range allowed
by Lemma 4.

• An 2−m-uniform (t, θ)-secure interactive hashing proto-
col where θ is negligible in `, t ≥ m−ζ log(1/(ε′+ε′′))
and m ≥ 2` log k. Let Fm be a dense encoding of the
subsets of size ` of a set of size k.

Transmission phase:

• Alice chooses uniformly k positions from X . Similarly,
Bob samples k positions from X̃ . We call their sets of
positions A and B, respectively.

Setup phase:

• Alice sends A to Bob. Bob computes D = A ∩ B. If
|D| < `, Bob aborts. Otherwise, Bob picks a random
subset C of D of size `.

• Bob computes the encoding W of C (as a subset of
A). Alice and Bob interactively hash W , producing two
strings W0,W1. They compute the subsets C0, C1 ⊂ A
that are respectively encoded in W0,W1. If either encod-
ing is invalid, they abort.

Transfer phase:

• Bob sends e = c⊕ d, where Wd =W .
• For i ∈ {0, 1}, Alice picks Ri

$← {0, 1}r, computes
(Yi, Pi)← Ext(XCi , Ri) and Zi ← si⊕e⊕Yi, and sends
(Zi, Ri, Pi) to Bob.

• Bob outputs s = Rec(X̃C , Rd, Pd)⊕ Zd.

C. Proof of security for the oblivious transfer protocol

In this section it is proved that the protocol presented above
is (λC , 0, λA)–secure for λC and λA negligible in `.

Lemma 9: The protocol is λC-correct for λC negligible in
`.

Proof: The probability of an abort is analyzed first. The
protocol will abort if either |D| < `, or if one string obtained
in the interactive hashing protocol is an invalid encoding of
subsets of A. By Lemma 6, Pr[|D| < `] < e−`/4. Out of
the two outputs of the interactive hashing protocol, one of
them is always a valid encoding (since Wd = W , which is
the encoding of C). The other output W1−d is 2−m-close to
distributed uniformly over the 2−m − 1 strings different from
Wd. Since it is a dense encoding, Lemma 8 implies that the
probability that it is not a valid encoding is thus less than or

equal to 2−m +
(k`)

2−m−1 ≤ 2−m + 2` log k−m+1 ≤ 4k−` for
m ≥ 2` log k.

If both parties are honest and there is no abort, then s =
sc if and only if Rec(X̃C , Rd, Pd) = Yd. By the properties
of the employed fuzzy extractor, this last event happens if
HD(XC , X̃C) ≤ (δ + ξ)`. By Lemma 5, HD(XC , X̃C) >
(δ + ξ)` with probability at most e−ξ

2`/2. Putting everything
together this concludes the proof.

Lemma 10: The protocol is 0-secure for Bob.
Proof: There are two possibilities: either the protocol

aborts or not. If the protocol aborts in the setup phase, Bob
still has not sent e = c ⊕ d, so Alice’s view is independent
from c. On the other hand, if the protocol does not abort,
then W1−d is a valid encoding of some set C ′. Due to the
properties of the interactive hashing protocol, Alice’s view is
then consistent with both Bob choosing c and C, and Bob
choosing 1− c and C ′. Hence Alice’s view is independent of
c. Thus the protocol is 0-secure for Bob.

Lemma 11: The protocol is λA-secure for Alice for λA
negligible in `.

Proof: There should be an index i (determined at the
setup stage) such that for any (s0, s1), (s

′
0, s
′
1) with si = s′i,

Bob’s view when the protocol is executed with (s0, s1) is close
to his view when executed with (s′0, s

′
1). The view of Bob is



given by the function computed from the public random source
f(X̃) along with all the messages exchanged and his local
randomness. The proof’s strategy is to show that for i, XC1−i

has high enough min-entropy, given Bob’s view, in such a way
that Y1−i is indistinguishable from an uniform distribution.
Indistinguishability of Bob’s views will then follow.

By the bounded storage assumption, |f(X̃)| ≤ γn with
γ < α. Then, by Lemma 1,

Rε
′

∞(X | f(X̃)) ≥ α− γ − 1 + log(1/ε′)

n
= ρ.

Since Alice is honest, A is randomly chosen. Lets consider
a random subset C̃ of A such that |C̃| = `. This is an
(µ, ν, e−`ν

2/2)-averaging sampler for any µ, ν > 0 according
to Lemma 3. By setting µ = ρ−2τ

log(1/τ) , ν = τ
log(1/τ) , we have

by Lemma 2 that

Rε
′+ε′′

∞ (XC̃ | A, C̃, f(X̃)) ≥ ρ− 3τ

for ε′′ = e−`ν
2/2 − 2−Ω(τn). For ε̃ = (ε′ + ε′′)1−ζ , let Bad

be the set of C̃’s such that R∞(XC̃ | A, C̃, f(X̃)) is not ε̃-
close to (ρ−3τ)-min entropy rate. Due to the above equation
the density of Bad is at most (ε′ + ε′′)ζ . Then the size of the
set T ⊂ {0, 1}m of strings that maps to subsets in Bad is at
most (ε′+ε′′)ζ2m ≤ 2t. Hence the properties of the interactive
hashing protocol guarantee that with probability greater than
or equal to 1− θ there will be an i such that

Rε̃∞(XC1−i | A,C1−i, f(X̃),MIH) ≥ ρ− 3τ

where MIH are the messages exchanged during the interactive
hashing protocol. We now show that XC1−i has high min-
entropy even when given Zi, Yi. We can see (Zi, Yi) as a
random variable over {0, 1}2mF `. Then, by Lemma 1,

Rε̂+
√

8ε̃
∞ (XC1−i | A,C1−i, f(X̃),MIH , Zi, Yi) ≥

ρ− 3τ − 2mF −
1 + log(1/ε̂)

`
= kF .

Thus setting ε′ and ε̂ to be negligible in `, the use of the
(kF `, εF , δ+ξ, 0)-fuzzy extractor to obtain Yi (that is used as
an one-time pad) guarantees that only negligible information
about si⊕e can be leaked and that the protocol is λA-secure
for Alice for negligible λA.

IV. CONCLUSION

This work presented the first protocol for oblivious transfer
in the bounded storage model with errors. As expected, the
protocol works for a limited range of the noise parameter δ.

REFERENCES

[1] J. Kilian, “Founding crytpography on oblivious transfer,” ser. STOC ’88.
New York, NY, USA: ACM, 1988, pp. 20–31.

[2] D. Mayers, “Unconditionally secure quantum bit commitment is impos-
sible,” Physical review letters, vol. 78, no. 17, pp. 3414–3417, 1997.

[3] I. Haitner, “Implementing oblivious transfer using collection of dense
trapdoor permutations,” in TCC 2004, ser. LNCS, M. Naor, Ed., vol.
2951. Cambridge, MA, USA: Springer, Berlin, Germany, Feb. 19–21,
2004, pp. 394–409.

[4] M. O. Rabin, “How to exchange secrets by oblivious transfer,” Technical
Report TR-81, Harvard Aiken Computation Laboratory, Tech. Rep.,
1981.

[5] M. Bellare and S. Micali, “Non-interactive oblivious transfer and sppli-
cations,” in CRYPTO’89, ser. LNCS, G. Brassard, Ed., vol. 435. Santa
Barbara, CA, USA: Springer, Berlin, Germany, Aug. 20–24, 1990, pp.
547–557.

[6] Y. T. Kalai, “Smooth projective hashing and two-message oblivious
transfer,” in EUROCRYPT 2005, ser. LNCS, R. Cramer, Ed., vol. 3494.
Aarhus, Denmark: Springer, Berlin, Germany, May 22–26, 2005, pp.
78–95.

[7] C. Peikert, V. Vaikuntanathan, and B. Waters, “A framework for efficient
and composable oblivious transfer,” in CRYPTO 2008, ser. LNCS,
D. Wagner, Ed., vol. 5157. Santa Barbara, CA, USA: Springer, Berlin,
Germany, Aug. 17–21, 2008, pp. 554–571.

[8] R. Dowsley, J. van de Graaf, J. Müller-Quade, and A. C. A. Nascimento,
“Oblivious transfer based on the mceliece assumptions,” in ICITS 2008,
ser. LNCS, R. Safavi-Naini, Ed., vol. 5155. Calgary, Canada: Springer,
Berlin, Germany, Aug. 10–13, 2008, pp. 107–117.
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