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Abstract—Transactive Energy Market (TEM) operates a day-
ahead market for efficient energy management and determines
the energy prices in advance for the future period. This prede-
termined rate is used during real-time energy trading. Hence,
it is crucial to provide the correct energy forecast to estimate
fair energy prices for all users. However, this market poses a
potential opportunity for attackers to manipulate energy prices
through False Data Injection Attacks (FDIAs). Moreover, sharing
energy forecasts with market operators (MO) or participants
violates users’ privacy. To address these issues, this paper first
presents two FDIAs to a day-ahead TEM and then numerically
evaluates their effects. Then, we design a novel framework to
address the trade-off between sharing forecasts and user privacy.
We show how users can share the energy forecast with MO
and other participants securely while preserving privacy using
the developed framework. Finally, we show how our proposed
framework detects malicious activities of users (e.g., deviation of
actual energy supply/demand from forecast beyond a threshold)
and prevent FDIAs effectively.

Index Terms—Transactive energy market, false data injection
attacks, impact analysis, attack detection, user’s privacy

I. INTRODUCTION

The transactive energy market (TEM) is a new market
framework for energy management in smart grids that enables
the exchange of energy and services between different par-
ticipants in the grid [1]. It allows for a more decentralized
approach where individual users can generate energy from the
distributed energy resources (DERs) instead of relying solely
on centralized power generation and distribution [2]. More-
over, users have the ability to actively negotiate the sale of their
extra energy to other users directly or via intermediaries [3].
This approach enables a more flexible, resilient and efficient
energy system, while also empowering users to take greater
control over their energy consumption and costs.

TEM can be categorized into three types, full peer-to-
peer (P2P), community-based, and hybrid scheme [4]. In the
full P2P case, users trade energy with each other without
any mediator. On the other hand, a market operator (MO)
runs trading activities in community-based and hybrid trading
schemes. Among the three structures, hybrid schemes are
more scalable than others as total market participants can be
divided into smaller communities with fewer members which
decreases the computational and communication overhead and
enhances scalability [5]. TEM runs the day-ahead market a
day or an hour prior to the actual energy generation [6].
Users join the market and commit with their peers or market
authorities to provide/consume a certain amount of energy

based on energy generation and load forecast, which must be
met during real operation/time. This market plays a pivotal role
in energy management as it helps to reduce future uncertainties
and prepare the generators for their forthcoming operation. It
determines energy prices using the auction-based or distributed
method for a period/day in advance based on the total demand
and supply forecast of energy [7]. Hence, it is crucial to
provide correct energy data and maintain data integrity in TEM
to estimate a fair energy price that benefits all users involved.

TEM comprises several market components such as IoT-
integrated DERs, smart appliances, home energy management
systems (HEMS), and communication channels which make
it highly susceptible to false data injection attacks (FDIAs)
through those components [8]. Moreover, an individual or
group of participants may intentionally misbehave and provide
false data regarding their energy consumption or production
forecast to market authorities. Attackers are motivated to carry
out FDIAs in order to obtain financial benefits or disrupt
the market operation [9]. These FDIAs greatly manipulate
energy prices in the market and move the system away from
its optimal solution [10]. Therefore, an effective approach is
necessary to ensure data security and prevent FDIAs.

Additionally, energy forecast data is sensitive for market
participants as participants’ privacy is related to it. Energy
data can reveal a user’s everyday activities to an unauthorised
person which violates an individual’s privacy [11]. Moreover,
if market authorities have access to individual users’ forecasts,
they can use them for targeted marketing and pricing strategies
for those customers. This approach may lead to unequal treat-
ment of participants and could potentially compromise their
privacy. Hence, it is necessary to design a market framework
that will safeguard the privacy of users when sharing energy
demand/supply predictions with others.

Considering the above-discussed issues, this work focuses
on conducting a series of investigations. First, the study aims
to explore the impact of FDIAs on the hybrid energy trading
schemes of TEM. Then, we propose a new framework to
provide security of energy forecast data and prevent FDIAs
during trading energy. Our main contributions are to:

• present two FDIAs performed by malicious users on
the hybrid energy trading scheme of TEM and analyze
their impact. The results show that malicious users gain
financial benefits from the market by injecting a small
false prediction through other users’ devices.
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• develop a novel framework using two advanced yet
simple and efficient cryptographic primitives for FDIAs
prevention and detection. We also analyze the security
and privacy guarantees of the proposed framework for
sharing energy data in tradings.

In contrast to [12], this study employs a hybrid TEM as
a system model and introduces two FDIAs under the attack
model. We implement both FDIAs and investigate their impact
on market participants and operations through simulation.
We have security assessments to prevent FDIAs and identify
attackers or affected devices using the proposed framework.
None of them are present in [12].

II. RELATED WORK

In the existing literature, several research studies have
focused on examining cybersecurity threats, vulnerabilities,
attack detection, and mitigation strategies within TEM-based
power systems [6], [13]–[15]. However, they have often over-
looked a critical aspect: the potential for market participants
and external attackers to launch various attacks, such as
FDIAs, with the aim of manipulating original forecast data.
These attacks may target various system components or in-
volve injecting false forecasts directly using their controlled
devices, all without significant security breaches. Moreover,
they have not explored the detection and prevention of such
FDIAs. Additionally, only a limited number of studies [16]–
[19] have considered participants’ privacy during energy trad-
ing in TEM. The current cryptographic-based solutions [18],
[19] to preserve user privacy during energy trading in TEM
are unsuitable for real-time market operations due to the high
computational cost. Hence, a suitable solution is required to
address all of the above discussed issues. In this work, we
develop a novel framework for energy trading in hybrid TEM
based on two well-known cryptographic primitives: additive
secret sharing and Pedersen commitment, which are highly
renowned for their computational efficiency and suitability for
real-world applications. Moreover, their potential in addressing
data security and user privacy issues within the TEM context
has not been explored before.

III. SYSTEM MODEL

In this work, we considered a hybrid market structure for
energy trading as shown in Fig.1. Here, the total number
of market participants/transactive agents (TAs) is N . N TAs
can be divided into several communities. For the sake of
simplicity, we divided N TAs into 2 communities in Fig.1.
A market operator (MO) leads the trading activities of each
community. In the community, each TA comprises a set of
smart appliances, a set of DERs (solar panels, photovoltaic
batteries), a HEMS, and a tamper-proofed smart meter. The
HEMS is connected with all appliances and DERs. HEMS
determines the optimal starting time of each connected device
based on the energy generation forecast of DERs and the
preference of TAs. Using device schedules and DER forecasts,
HEMS makes an estimation of the surplus or deficit of energy
for a specific period. Depending on whether it is consuming

Fig. 1. System model overview.

or generating energy for a particular time slot, the TA acts
as either a consumer/buyer or a prosumer/seller in the market.
TAs have the ability to communicate and exchange information
with each other. However, to trade energy with each other,
they have to talk via their own MO. The activities of all
communities are monitored by a Distribution System Operator
(DSO) on behalf of the grid, and the MO communicates with
the DSO while trading energy from the grid. In this system, we
assume that communication among market different entities
happens through the authenticated link.

This work divides the whole day or 24-hour period into
equal time slots such as t = 1, 2, . . . , T , where T is the total
number of time slots. The whole market process is divided
into two phases, the forecast phase, and the real-time/online
phase. The forecast phase happens prior to the time referred
to as t, while the online phase takes place after that time. To
be more precise, if we split the entire day into 24 intervals of
one hour each, the time frame between 12 AM to 1 AM is
represented by t = 1. MO conducts the forecast phase before
12 AM. Based on HEMSs’ forecasts, TAs participate in the
market and agree with MO on the production or consumption
of a certain amount of energy between 12 to 1 AM. After 1
AM, MO runs the real-time phase and verifies the real energy
production or consumption by utilizing the energy information
gathered from the smart meter of each TA.

To trade surplus/deficit energy, each TA has three options.
1) Intra-community, 2) Inter-community, and 3) Grid. In those
cases, TA needs to communicate with other TAs, neighbouring
MOs, or DSO via its own MO. TA can trade energy from
its own or neighboring community members through active
negotiation whereas TA receives fixed prices to sell or buy
energy from the grid. In this study, we use the distributed
market-clearing algorithm presented in [5] for trading energy
in inter-community, intra-community, or grid. For details about
the market-clearing/trading mechanisms, we refer interested
readers to check [5].



IV. ATTACK MODEL

As TEM consists of smart appliances, IoT-integrated DERs,
HEMS, communication channels, etc; attackers can use any
one of them to conduct FDIAs. Moreover, some TAs (sell-
ers/buyers) can act as attackers and deliver the wrong de-
mand/supply forecast to the TEM through HEMSs or smart
appliances. These devices can either belong to them and be
under their direct control or they can be compromised devices
located in a different household. Furthermore, a group of TAs
can collaborate and inject false predictions collectively.

In TEM, the attackers have the ability to manipulate various
types of data such as price signals, demand/supply, flexibility,
etc. However, in this study, to analyze the impact of attacks
through simulation, the focus is solely on FDIAs where a set
of malicious TAs (sellers and buyers) introduce false demand
information into the market. More specifically, we consider
below two FDIA scenarios in this section.

FDIA 1: The first attack scenario considers a group of
malicious seller TAs from different communities who intend
to create a fraudulent increase in the overall energy demand of
the market for some periods. To achieve this goal, malicious
TAs target some TAs and hack their HEMS to gain illegal
access. Then, they can escalate the temperature data for those
particular periods or change some of the device schedules from
other time slots to the specified time slots. As a result, the
energy demand of the affected users rises significantly, leading
to high energy demand in the market.

FDIA 2: In the FDIA 2, a set of malicious buyer TAs is
involved in the attack. They can do the same activity as the first
attack scenario. However, instead of escalating energy demand,
this time the intention of attackers is to reduce energy demand
in the market to get the illegitimate benefit. To do so, they can
manipulate temperature forecasts to show lower temperatures
or adjust device scheduling preferences to move the device
start time from a high-demand period to a low-demand period.
All of these activities result in a reduction of the user’s energy
demand forecast for specific time periods.

V. IMPACT ANALYSIS

In this section, we examine the impact of the aforemen-
tioned attacks on the energy price, selling, and buying energy
of the market using simulation results. The objective of
this section is to investigate how (even small) false demand
injection can significantly manipulate the market price and
amount of traded energy in TEM. To simulate the energy
trading process, we develop our source code in Python. We
considered the hybrid TEM with 32 TAs, half of which act
as sellers and the other half as buyers. These TAs are divided
into four distinct areas/communities with a different number of
sellers and buyers TAs in each area. Energy trading simulations
are carried out for a single time interval, which is assumed to
be one hour (1h). During the simulation, the projected energy
supply and demand for each TA are randomly chosen within
the range of 0 to 10 kW. We set the rest of the main parameters
of each TA and MOs following [5].

To investigate the attack impact, first, we run the market
without attacks and use the market-clearing algorithm de-
scribed in [5] to determine energy prices of communities.
We also estimate traded energy in each community. Then, we
injected false demand through four random TAs, one from
each community. More specifically, for FDIA 1, we raised
the demand of consumers, while for FDIA 2, we decreased
the consumer demand. To execute those attacks, we selected
two different sets of consumer TAs and manipulated the
energy demand in a random manner. The demand forecast of
respective TAs before and after FDIAs are listed in Table I.
Here, we define TAi as ith TA, where i = 1, . . . , N .

TABLE I
ENERGY DEMAND OF TAS BEFORE AND AFTER FDIAS

TA FDIA 1
Energy Demand (kW) TA FDIA 2

Energy Demand (kW)
Before Attack After Attack Before Attack After Attack

TA2 3.00 10.00 TA3 6.23 1
TA6 4.33 6.33 TA5 6.47 1.47
TA21 5.83 6.83 TA20 5.35 2.35
TA30 2.76 9.76 TA32 9 2

The energy prices of four communities without and with
FDIAs are illustrated in Fig. 2. The result shows that the
energy price is not uniform across different communities. The
reason is the demand and supply of TAs differ among the four
communities and the number of TAs per community is also
varied. Fig. 2 also shows that introducing a small amount of
fake demand during the first FDIA causes a rise in energy
prices in all communities. In contrast, if energy demand is
reduced during the FDIA 2, it leads to a decrease in the
market clearing price. From the simulation result, it is evident
that the energy price is proportionally related to the energy
demand of the market. In TEM, MO determines the energy
price in advance for the future period and the predetermined
rate is applicable to trade energy during the real-time market.
Hence, malicious TAs can manipulate the price in both ways
to escalate their own benefits. Seller TAs can inflate prices by
injecting fake demand to obtain a higher selling price, while
buyers TAs can decrease the overall demand to buy energy at
a lower price.

Fig. 3 shows that both attacks have a significant impact on
the traded energy of the market. As depicted in Fig. 3, the
selling energy of each community rises up to 11 kW due
to false demand injection. The reason is when an attacker
introduces fake demand into the community, it will result
in an escalation of the overall demand during that specific
period. Hence, malicious seller TAs can sell more energy
than in a normal period and increase their profit. In addition,
the attack causes an increase in the total buying energy of
each community, as misled buyer TAs join the market to buy
the extra energy due to manipulated high demand, resulting
in financial losses for them. On the other hand, the second
FDIA could provide financial benefits for malicious buyer TAs.
Since many TAs are not participating in energy trading due to
low demand, malicious consumer TAs can take advantage of



Fig. 2. Energy price of four communities without and with FDIAs.

Fig. 3. Total selling energy of four communities without and with FDIAs.

this situation and purchase the energy they need from other
community members at a lower price. However, the real-time
scenario could be different and the actual demand can be much
higher than the predicted demand in that specific period. In
such scenarios, if the MO is unable to immediately manage
and supply enough energy, the whole community can face
severe consequences, such as a power outage. We have seen
a similar pattern as Fig. 3 in the total buying energy of four
communities without and with FDIAs.

VI. FDIAS DETECTION AND PREVENTION

As demonstrated in Section V, inaccurate energy predictions
can have significant consequences for TAs and market opera-
tions. Therefore, it is crucial to ensure that energy predictions
are as accurate as possible to maintain a stable and reliable
TEM. One possible approach to achieve this is by monitoring
the energy predictions of each TA. However, a significant
disadvantage of this approach is the compromise of TA’s
privacy, as MO must store the forecast data of each TA. If a
TA’s forecast data is accessed by others, it can expose sensitive
information about the TA’s home presence, patterns of appli-
ance usage, and household members during specific periods
in advance. This is a violation of the TA’s privacy. Moreover,
attackers can intercept the transmission link between TA and
MO, or manipulate the MO’s database to obtain forecast data.

This information could be used to plan theft or burglary
while the TA is away from home. Thus, in this paper, our
focus is to design a novel energy trading framework for TEM
called SePEnTra to detect TAs whose actual energy consump-
tion/production deviates from their forecasted demand/supply
beyond a threshold while preserving TAs’ privacy. Detection
of the TAs would facilitate the identification of the individuals
or devices responsible for injecting false forecasts. Moreover,
SePEnTra is designed to prevent the manipulation of energy
prediction data by external attackers (who are not joining in
TEM to trade energy), malicious TAs, and TA him/herself, as
part of our efforts to prevent FDIAs. Here, it is important to
mention that the energy forecast of individual TA may not
perfectly align with the actual generation/consumption due to
various unavoidable reasons, such as unpredictable weather
changes, the intermittent nature of DERs, and unforeseen
emergencies. However, it is vital to ensure that any deviations
remain within acceptable limits to maintain a stable market
operation and prevent any significant negative impacts.

A. SePEnTra: Secure & Privacy-Preserving Energy Trading

Fig.4 illustrates the five phases of SePEnTra, which are One-
OffKeyGen, Negotiation, Commitment, CommitmentCheck,
and Online. We refer readers to [12] for the sequential diagram
of SePEnTra. The first four phases of SePEnTra are developed
for the forecast phase of TEM while the fifth phase is
designed for the real-time phase (see section III for the detail
of the forecast and real-time phase). With the exception of
OneOffKeyGen, the remaining phases are executed once per
time slot. In contrast, OneOffKeyGen is performed once at the
beginning, and the generated key is reused by the TAs in each
subsequent period (unless it is compromised, in which case
the procedure OneOffKeyGen is executed again to generate
a new key). SePEnTra is developed using two advanced
cryptographic primitives, namely Additive secret sharing [20]
and Pedersen commitment [21]. Additive secret sharing is a
method in secure multiparty computation (MPC) that partitions
confidential information into multiple ’shares,’ and when these
shares are combined, they reconstruct the initial secret. In this
process, each participant possesses one of these shares, and it
is necessary to combine all of them to reconstruct the original
secret. It is important to note that no subgroup of participants
possesses sufficient information to unveil the secret. On the
other hand, the Pedersen commitment scheme is an example
of an additive homomorphic commitment scheme [22]. It
enables a sender or committer to commit to a specific value,
followed by the ability to later unveil the committed value.
The recipient of this commitment can then verify whether
the revealed value matches the one committed to initially.
Additive secret sharing and the Pedersen commitment scheme
are known for their computational efficiency and suitability for
real-world applications. Given the extensive nature of TEM,
which requires a careful balance of computational efficiency
when deploying any mechanism, this study develops a TEM
framework utilizing these two cryptographic primitives to en-
sure a low computational burden for practical implementation



Fig. 4. Block diagram of our proposed secure and privacy-preserving energy trading mechanism.

while maintainng data security and user privacy. We describe
five phases of our proposed model, SePEnTra, below:

SePEnTra.OneOffKeyGen: In our proposed framework,
MO uses the Pedersen commitment scheme [21] to generate
a commitment key ck, which is then distributed to all the TAs
in the community. Each TA stores this key for future use.

SePEnTra.Negotiation: is responsible for finalizing the
energy demand and supply forecast, denoted as Ei, for each
period after a round of negotiation. In each round, TAi

updates the initial forecasts based on the price signal received
from MO. On the other hand, MO requires the aggregated
demand/supply information of the community to update the
energy price in each round. Instead of sharing Ek

i (where k
= round of negotiation), TAi uses an additive secret sharing
scheme to split Ek

i into N shares, with each share distributed
to one TA. This process is applied to all TAs, resulting in
each TA having N shares from N TAs. Then, TAi sums
up the N shares and sends the resulting value (Ek

i
′) to MO.

Finally, MO aggregates all the values received from the N
TAs, which results in the aggregated energy demand/supply
of the community and uses it to update the price signal in
each round. Once the negotiation is stopped, TAi stores its
final energy demand/supply forecast Ei, which must be met
during the actual operation or time.

SePEnTra.Commitment: Each TA generates the commit-
ment of Ei using ck and Pedersen commitment [21]. Let CTAi

denote the commitment of TAi and determine it using (1)

CTAi = Commitck(Ei, ri) = gEihri mod q (1)

Here, ri = randomness used for computing CTAi
, q =prime

number, and g, h = generators . Moreover, TAi splits Ei and
ri into N shares using additive secret sharing and distributes
one share to each of the N TAs. This process is repeated for
all TAs, resulting in TAi having N shares from each of the
N TAs. TAi then calculates the sum of the N shares of Ei

to obtain Ei
′, and the sum of the N shares of ri to obtain ri

′.
Finally, TAi sends CTAi

, Ei
′, and ri

′ to MO.

SePEnTra.CommitmentCheck: MO verifies the commit-
ment of each TA (CTAi ) using the additive homomorphic
property of Pedersen commitment [21] in this phase. MO es-
timates the commitment of the total energy forecast of N TAs
and checks the value with the summation of individual TA’s
commitment. If TAs passed the verification, MO stores CTAi

,
total energy forecast (E), and sum of randomness to generate
commitment (r) where E =

∑N
i=1 E

′
i and r =

∑N
i=1 r

′
i.

Otherwise, MO rejects TA’s commitment and notifies TAs.
SePEnTra.Online: identifies the malicious TAs whose real

energy usage deviates from their forecasted values beyond
the threshold. Specifically, when one time slot is over, TAi

receives its actual energy generation or consumption (ei)
from the smart meter. Then ei is a secret shared with the
N TAs. Each TA calculates the sum of the N shares that
they have received, resulting in the generation of e′i, which
is then forwarded to MO. MO combines all the e′i values to
derive e, and compares it to the total forecast E to check
whether the difference is within the acceptable range. If the
discrepancy between the expected (E) and actual (e) energy
usage is within the tolerable range, MO produces an empty list.
Otherwise, MO instructs each TA to disclose their respective
Ei, ei, and ri. Utilizing Ei and ri, MO computes C ′

TAi
and

contrasts it with the earlier value of CTAi
. If C ′

TAi
matches

CTAi
, MO proceeds to verify whether ei deviates beyond the

prescribed threshold from Ei. In case the deviation surpasses
the threshold, MO adds TAi to the list of malicious TAs and
outputs it.

VII. SECURITY ASSESSMENT

SePEnTra ensures that TAi’s energy forecast (Ei) and real
consumption (ei) are hidden from other TAs as TAi distributes
a secret share to other TAs, which provides no useful infor-
mation about Ei and ei. Moreover, TAi sends E′

i to MO
at each iteration, but MO cannot derive Ei from E′

i. After
convergence, TAi transmits the commitment of the energy
forecast (CTAi

) to MO which hides the actual forecasting
value from the MO. Hence, no other TAs and MO will
know TAi’s energy forecast except TAi, which preserves TA’s



privacy during energy trading. Only TAi reveals Ei and ei to
MO based on MO’s request when the one-time slot is over.
SePEnTra preserves TA’s privacy against external attackers as
well. Since the communications links are authenticated, an
external attacker or malicious TAs cannot alter the energy
forecast using FDIAs over the communication link.

Furthermore, SePEnTra verifies CTAi based on the commit-
ment of the total demand/supply forecast. MO estimates the
commitment of the total demand/supply forecast of N TAs
and checks the value with the summation of individual TA’s
commitment. If the attacker manipulates CTAi

or malicious
TAs alter their forecast value Ei after the negotiation phase,
this attack can be detected by MO. Hence, malicious TAs can-
not intentionally inject excessive demand or supply during the
forecast phase to manipulate energy prices. Even if malicious
TAs or external attackers compromise other TAs’ HEMS to
inject false forecasts using those devices, MO can detect those
TAs through the mismatch between forecast (Ei) and real
value (ei) in our proposed model. As SePEnTra effectively pre-
vents all possible manipulation of Ei, the deviation of actual
consumption from the forecast beyond a threshold indicates
that either the TAs have provided inaccurate forecasts, or their
devices are being subjected to an attack.

VIII. CONCLUSION

In this paper, we presented two FDIAs performed by
malicious TAs on the hybrid TEM and analyzed the impact of
attacks through simulation. The simulation result showed that
attackers can gain significant financial benefits and create a
disturbance in the regular market operation by injecting false
demand forecasts. Thus, sharing accurate energy forecasts and
keep tracking the energy forecast of each TA is crucial for effi-
cient market operation. As it is directly related to user privacy,
we proposed a novel framework, called SePEnTra for TEM.
We discussed how SePEnTra enables market participants to
share energy forecasts and actual energy data with all parties
without compromising their privacy. Then we analyzed how
the MO can utilize this information to generate accurate price
signals and identify the TAs who have provided inaccurate
forecasts, or whose devices are being subjected to an attack.
Finally, we demonstrated how SePEnTra prevents FDIAs in
several ways. In the future, our work can be extended by
implementing SePEnTra in the full P2P TEM.
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