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Abstract Oblivious polynomial evaluation (OPE) consists of a two-party protocol where a sender
inputs a polynomial p(x), and a receiver inputs a single value x0. At the end of the protocol, the
sender learns nothing and the receiver learns p(x0). This paper deals with the problem of oblivious
polynomial evaluation under an information-theoretic perspective, which is based on the definitions
of unconditional security developed by Crépeau et al. [9]. In this paper, we propose an information-
theoretic model for oblivious polynomial evaluation relying on pre-distributed data, and prove very
general lower bounds on the size of the pre-distributed data, as well as the size of the communications
in any protocol. It is demonstrated that these bounds are tight by obtaining a round-optimal OPE
protocol, which meets the lower bounds simultaneously. We present a natural generalization to OPE
called oblivious linear functional evaluation.

Keywords Information-theoretic cryptography · cryptographic primitives · oblivious polynomial
evaluation · commodity-based model.

1 Introduction

1.1 Secure Function Evaluation

Assume the existence of n players, 1, . . . , n; each player i has a private input xi, which is known only
to him/her. Their goal is to collaboratively compute f(x1, . . . , xn) in such a way that no player has
to reveal unnecessary information about his/her input. A protocol allowing two or more parties to
achieve this goal and satisfying both the correctness and the privacy constraints is called a secure
function evaluation protocol. The correctness constraint implies that the values the protocol returns
are correct, even if some party in the system fails (i.e., the faulty party can choose his/her input
to the function, but cannot force the protocol to output a wrong value as the result of the function
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evaluation); and the privacy constraint implies that the joint computation of f(x1, . . . , xn) does not
reveal to each participant i more information than what can be deduced from f(x1, . . . , xn) and
his/her own private input xi.

There are two main ways of defining the security of a cryptographic system: Information-Theoretic
Security (also called Unconditional Security) and Computational Security. For the former no assump-
tion is made about the computational power of the adversary. For the later, the security is defined
in terms of an adversary with limited computational resources. In order to prove that a system is
computationally secure, it is necessary to invoke certain unproven intractability assumptions, e.g.,
the hardness of computing the discrete logarithm. In contrast, information-theoretically secure sys-
tems do not rely on any hypotheses about the complexity of certain problems, but rely on phys-
ical assumptions, e.g., the existence of noisy channels. In spite of being considered less practical,
information-theoretic security is a permanent and stronger definition of security. This work focuses
on the oblivious polynomial evaluation problem from an information-theoretic point of view, and is
based on formal definitions of unconditionally secure evaluation schemes proposed by Crépeau at al.
[9] which corrected many drawbacks present in several ad-hoc definitions of security proposed in the
past.

1.2 Oblivious Transfer

Oblivious Transfer (OT), a cryptographic primitive introduced by Rabin [30], is of particular in-
terest in secure multi-party computation. It has been proven that any function can be evaluated
unconditionally securely if oblivious transfer is available [21]. This property is called completeness.

A useful variant of oblivious transfer is one-out-of-n string OT, which is denoted by
(
n
1

)
-OTk. It

allows a sender to send n strings (x0,. . . , xn−1) of length k to a receiver, who is allowed to learn one
of them according to his choice c. This process is illustrated in figure 1.

An OT protocol is said to be correct, if for honest players, the receiver obtains the desired
output xc and both players do not abort the protocol. It is said to be private if the sender learns no
information on the receiver’s choice c, while the receiver gets information concerning at most one of
the sender’s inputs.

It has been proven that unconditionally secure OT is impossible to achieve without further as-
sumptions. Traditional assumptions used with this purpose include noisy channels and correlations,
in which case both efficient protocols [7,8,24] and the theoretical limits [19,1,25,29] have been stud-
ied.1 In an ingenuous approach, Rivest [31] demonstrated that the use of a trusted third party, who
pre-distributes data to the players, also allows one to design unconditionally secure OT protocols.

Fig. 1 One-out-of-n string OT.

1.3 Oblivious Polynomial Evaluation

Oblivious Polynomial Evaluation (OPE) is a variant of Oblivious Function Evaluation and was intro-
duced in [26]. Similarly to OT, OPE is a very useful tool for achieving secure distributed computations.

1 In the computational security setting, OT can be based on various assumptions [30,13,3,27,16,20,11,28,12].
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OPE is a two-party protocol where a sender (Alice) inputs a polynomial over a finite field and a
receiver (Bob) inputs a single point of the same finite field. At the end of the protocol, Alice receives
nothing and Bob should receive the polynomial input by Alice evaluated on the point chosen by him.
This process is illustrated in figure 2. The protocol is secure if Bob evaluates the polynomial input
by Alice on at most one point and Alice learns nothing on which point was chosen by Bob.

As already envisioned by Naor and Pinkas in their original paper about OPE [26], oblivious
polynomial evaluation protocols are particularly useful in two types of applications. In the first one,
the receiver uses a value obtained from a k-wise independent space as a replacement for the full
independence of a pseudorandom function. The second type of applications uses OPEs for comparing
information without leaking it, or for preserving anonymity. Along those two lines many applications
of OPEs were founded such as: privacy preserving metering [26], privacy preserving data mining [23],
oblivious keyword search [14], constructing anonymous coupons that enable anonymous usage of
limited resources [26], generating a RSA key in a distribute way between two parties [15], and also
set intersection and secure equality of strings [26].

Since its introduction in [26] OPE has been extensively studied. In [6] the problem of implement-
ing OPE was efficiently reduced to that of achieving OT. Also, in [6] an information-theoretically
secure protocol for implementing OPE was proposed. The security of that protocol was based on the
trustiness of a third party which took an active role in the protocol execution.

In this paper, we analyze the problem of achieving unconditionally secure oblivious polynomial
evaluation without using an active (on-line) trusted party.

OPE 0x
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Fig. 2 Oblivious Polynomial Evaluation. Note that Fq denotes a finite field.

1.4 Commodity-Based Cryptography

Many security schemes demand an active server for intermediating the interactions among the par-
ticipants of the protocol. Thus, the information exchanged among the participants will depend on
the reliability and trustiness of the server during all the protocol execution. One alternative to this
is the so-called Commodity-Based Cryptography, introduced by Beaver [2].

The protocols proposed in this paper rely on the commodity cryptographic model, where play-
ers buy cryptographic primitives from “off-line” servers, usually called trusted initializers (TIs).
These primitives can be used later on to implement general cryptographic protocols. The commodity-
based model was inspired on the Internet architecture, which is usually based on the “client-server”
paradigm. Once the primitives, or commodities as they are called by Beaver, are acquired, no further
interactions between server and users are required (figure 3). Therefore, the servers need not to know
the values which are computed by the players. Moreover, if several servers are available, they do not
need to be completely trusted, that is, the system is secure even if some servers collude with the users
of the commodities and/or among themselves. Another interesting feature of Beaver’s model is that
no interaction among the servers is required.

In this contribution, we show that the use of “off-line” servers provides very efficient and simple
protocols for secure oblivious polynomial evaluation over a finite field.

Although this model was formalized just in [2], several independent works share the same fla-
vor. We cite key-pre-distribution schemes [22], unconditionally secure bit commitments [31,5] and
unconditionally secure digital signature schemes [18].
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Fig. 3 Process (a) represents the setup phase and process (b) represents the interactions where no further inter-
vention of the commodity server is needed.

1.5 Contributions and Related Works

Seminal works on secure function evaluation and OPE were computationally secure. For instance,
Naor and Pinkas proposed in [26] an OPE scheme which was based on the intractability assumption
of noisy polynomial interpolation. Later, Bleichenbacher and Nguyen demonstrated in [4] that this
assumption could be less strong than expected and proposed a new intractability assumption based
on the polynomial reconstruction problem. While the hardness of these problems remains an open
question in the foundations of computer science, our OPE model is information-theoretically secure,
i.e., it is secure even against a computationally unbounded adversary and does not rely on unproven
computational hypotheses.

Crépeau et al. [9] constructed a new formal definition of unconditional security, which is based
on the ideal/real model paradigm, and established conditions for two-party secure function evaluation
in a scenario where the players have infinite computational resources. By proving the security of our
model, this work aims at revisiting the problem of oblivious polynomial evaluation from this new
information-theoretic point of view.

We propose and solve the problem of implementing information-theoretically secure OPE in the
commodity-based cryptography model [2]. Our solution is optimal in terms of communication com-
plexity. We provide a model (section 2), bounds for the amount of memory which is required from
players taking part in the protocol (section 3) and a construction which achieves these bounds, thus
showing their tightness (section 4).

Finally, we propose a more general protocol called oblivious linear functional evaluation (OLFE)
in section 5. In OLFE Alice inputs a linear functional while Bob evaluates this linear functional on
a vector of his choice. As a side result of our bounds, we prove the optimality of oblivious transfer
protocols proposed by Rivest [31] and Beaver [2].

2 Definitions

In this section, the general OPE model and important definitions used throughout the text are
provided. These definitions include the security requirements for OPE realization and the scenarios
in which our model is applicable.

2.1 Notation

In the following, we denote random variables by upper-case letters (X) and their realizations by
lower-case letters (x). The set of values taken by a random variable is denoted by calligraphic letters
(X ) and we use | · | to denote its corresponding cardinality (|X |). The Shannon entropy of a random
variable X is denoted by H(X) and the mutual information of two random variables X and Y is
denoted by I(X;Y ). Similarly, I(X;Y |Z) and H(X|Z) denote the conditional mutual information
and the conditional entropy when conditioned on the random variable Z.
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2.2 Security Definitions

A two-party protocol consists of a program which describes a series of messages to be exchanged
and local computations to be performed by the two parties. The protocol is said to halt if no more
local computations or message exchanges are required. At the end of an execution of a protocol, each
party emits an accept/reject message, depending on the messages he/she received and on the result
of local computations.

Defining the security of a two-party protocol, where oblivious polynomial evaluation is an impor-
tant special case, represents a challenging task. We consider scenarios where the parties are compu-
tationally unbounded and the existence of active and passive adversaries. An active (or malicious)
adversary may change his/her behavior arbitrarily and cooperate in order to disrupt the correctness
and privacy of the computation. On the other hand, a passive (or semi-honest) adversary is the one
who follows the protocol, but may try to acquire more information than what he/she is allowed to
know.

The definitions for information-theoretically secure two-party function evaluation used in this text
are equivalent to the real/ideal model paradigm. In the ideal model, the parties are admitted to have
access to a trusted third party, who would receive their private inputs, compute the outcome of the
desired functionality f and send to each party the corresponding output. In the real model, no trusted
party for computing the functionality f exists (possibly the parties have access to some functionality
g), and the mutually distrustful parties should run some protocol to compute f . Intuitively speaking,
if the real life protocol can emulate the ideal model, the protocol is said to be secure. In other
words, a real life protocol is considered secure, if no adversary can cause more damage in a real
execution than an ideal adversary can cause in an execution of the ideal protocol. Thus, if a protocol
is secure according to this paradigm, an attack against the real life protocol has an effect similar to
an attack against the ideal model, where the participants have only a black-box access to the desired
functionality.

We shall now define when a protocol perfectly securely evaluates a function f : X × Y → U × V.
To accomplish this task, we will use the formalism and definitions of [9]. Let x ∈ X be the input
of the first player and y ∈ Y the input of the second player. Consider also an additional auxiliary
input z ∈ {0, 1}∗ that can be potentially used by both players. For instance, this auxiliary input can
be the data generated by previous protocol executions, or any other information that could give an
illegal advantage to a dishonest party. Thus, an honest player will ignore this additional input. A
g-hybrid protocol consists of a pair of algorithms Π = (A1, A2) that can interact by means of two-
way message exchange and have access to some functionality g. A pair of algorithms A = (A1, A2)
is admissible for protocol Π if at least one of the parties is honest, that is, if at least one of the
equalities A1 = A1 and A2 = A2 is true. Note that no security is required when both parties are
dishonest ((A1 6= A1) ∧ (A2 6= A2)).

The Real Model. In the real model, the players have no access to a trusted intermediary and must
compute the desired functionality by means of a g-hybrid protocol Π = (A1, A2). Let A = (A1, A2)
be an admissible pair of algorithms for the protocol Π. The joint execution of Π under A in the real
model,

Realg
Π,A(z)

(x, y),

denotes the resulting output pair, given the input pair (x, y) ∈ X ×Y, the auxiliary input z and the
functionality g used by the admissible pair A.

The Ideal Model. In the ideal model, both players have access to a trusted third party to evaluate
the functionality f . The trivial protocol B = (B1, B2) is the protocol where both parties send their
inputs to the functionality f and output the values that the functionality f outputs to them. The
algorithms B1 and B2 of the protocol B = (B1, B2) receive the inputs x and y, respectively, and
the auxiliary input z. The algorithms send the values x′ and y′ to the trusted party, who returns
the value (u′, v′) = f(x′, y′). Finally, B1 and B2 output the values u and v. Let B = (B1, B2) be an
admissible pair of algorithms for B. The joint execution of f under B in the ideal model on input
pair (x, y) and auxiliary input z, given by

Idealf,B(z)(x, y),
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represents the output pair that results from the interaction between B1(x, z) and B2(y, z) under the
functionality f .

Figure 4 illustrates the abstraction of an admissible protocol B in the ideal model. At first, Alice

receives input (x, z) and Bob receives input (y, z). Then, the parties produce the values BIN1 (x, z) =

(x′, z1) and BIN2 (y, z) = (y′, z2). The parties send the inputs x′ and y′ to the trusted entity. The
trusted entity performs the desired computation f(x′, y′) = (u′, v′), and sends u′ to Alice and v′

to Bob. Upon having in their possession the outcomes u′ and v′ and the auxiliary inputs z1 and

z2, Alice outputs BOUT1 (u′, z1) = u and Bob outputs BOUT2 (v′, z2) = v. Note that when one of the
parties is honest, he/she does not perform any modification on his/her inputs nor on his/her outputs.
Additionally, auxiliary inputs are not used by honest participants.
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Fig. 4 Illustration of an admissible protocol B in the ideal model, where the parties have access to a trusted
external entity.

Figure 5 exhibits the corresponding simplification of the model when one of the parties behaves
honestly.
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Fig. 5 Simplification of the ideal model for an honest Bob and an honest Alice, respectively.

Definition 1 (Perfect Security) A g-hybrid protocol Π evaluates a function f perfectly securely
if for every admissible pair of algorithms A = (A1, A2) in the real model for the protocol Π, there
exists an admissible pair of algorithms B = (B1, B2) in the ideal model for the trivial protocol B,
such that

Realg
Π,A(z)

(x, y) ≡ Idealf,B(z)(x, y),

for all input pair (x, y) ∈ X × Y and auxiliary input z ∈ {0, 1}∗. Note that the symbol ≡ denotes
identical distributions.
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Next we present a theorem from [9] which states the conditions for secure function evaluation.

Theorem 1 A protocol Π is said to securely evaluate the deterministic functionality f perfectly, if
and only if for every pair of algorithms A = (A1, A2) that is admissible in the real model for the
protocol Π and for all inputs (x, y) ∈ X × Y and for all auxiliary input z ∈ {0, 1}∗, A produces
outputs (U, V ), such that the following conditions are satisfied:

– (Correctness) If both players are honest, we have

(U, V ) = f(X,Y ).

– (Security for Alice) If Alice is honest then there exist random variables Y ′ and V ′ such that
(U, V ′) = f(X,Y ′),

I(X;Y ′|ZY ) = 0, and I(UX;V |ZY Y ′V ′) = 0.

– (Security for Bob) If Bob is honest then there exist random variables X ′ and U ′ such that
(U ′, V ) = f(X ′, Y ),

I(Y ;X ′|ZX) = 0, and I(V Y ;U |ZXX ′U ′) = 0.

The security definitions are now applied to the oblivious polynomial evaluation problem. The
ideal functionality fOPE is denoted by

fOPE(P,X0) := (⊥, P (X0))

such that X0, P (X0) ∈ Fq, where Fq is a finite field, P is a polynomial defined over Fq and ⊥
denotes a constant random variable. The random variables P and X0 can have arbitrary probability
distributions.

The application of our security definitions to the specific case of OPE yields to the following
theorem.

Theorem 2 A protocol Π realizes an OPE perfectly securely if and only if for every admissible pair
of algorithms A = (A1, A2) for protocol Π and for all inputs (P,X0) and auxiliary input Z, A produce
outputs (U, V ) such that the following conditions are satisfied:

– (Correctness) If both players are honest, then

(U, V ) = (⊥, P (X0)).

– (Security for Alice) If Alice is honest, then we have U =⊥ and there exists a random variable
X ′0, such that

I(P ;X ′0|ZX0) = 0, and I(P ;V |ZX0X
′
0P (X ′0)) = 0.

– (Security for Bob) If Bob is honest, then we have

I(X0;U |ZP ) = 0.

Proof We have to prove the equivalence between the privacy conditions for Bob in Theorems 1 and
2. This proof is analogous to the one presented in [9] for one-out-of-n string OT.

According to Theorem 1 and using the notation introduced for OPE, we must have that

I(X0;P ′|ZP ) = 0, and I(P ′(X0)X0;U |ZPP ′U ′) = 0

or equivalently,
I(X0;P ′|ZP ) + I(P ′(X0)X0;U |ZPP ′) = 0.

P ′(X0) is a function of X0 and the polynomial P ′ so

I(P ′(X0)X0;U |ZPP ′) = I(X0;U |ZPP ′) + I(P ′(X0);U |X0ZPP
′)

= I(X0;U |ZPP ′).

Then, the expression I(P ′(X0)X0;U |ZPP ′) = 0 is equivalent to I(X0;U |ZPP ′) = 0.
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Applying the chain rule for mutual information we obtain

I(X0;P ′|ZP ) + I(X0;U |ZPP ′) = I(X0;P ′U |ZP )

= I(X0;U |ZP ) + I(X0;P ′|ZPU)

= I(X0;U |ZP ).

The last equality follows from the fact that, in a secure OPE implementation, P ′ and X0 have to
be independent given ZPU . One can observe that, conditioned on P and Z, Bob chooses his entry
X0 independently from P ′, the polynomial input actually supplied by Alice. Furthermore, we should
require that the action of providing to the protocol a different input does not lead to any advantage
to a malicious Alice. I.e., given that Alice knows ZPU , her knowledge on P ′ does not give her any
additional information on Bob’s input X0. Mathematically, X0, ZPU and P ′ will form a Markov
Chain:

X0 ↔ ZPU ↔ P ′ ⇒ I(X0;P ′|ZPU) = 0.

Therefore, the security condition for a honest Bob is reduced to:

I(X0;U |ZP ) = 0.

2.3 Important Observation on the Auxiliary Inputs

It is important to notice that the security conditions in theorems 1 and 2 must hold for all probability
distributions of the inputs (X,Y ). More specifically, the security conditions have to be valid for any
input distribution PXY |Z=z. Thus, all the underlying requirements are conditioned on the random
variable Z. In order to prove the security of a protocol, one has to prove that the conditions are
satisfied for all distributions PXY , omitting the random variable Z in all the expressions.

Moreover, in [10], Crépeau and Wullschleger demonstrated that if a protocol is unconditionally
secure against adversaries without auxiliary input, then it is also unconditionally secure against
adversaries with auxiliary input.

As a consequence of this analysis, we will ignore the random variable Z henceforth.

2.4 Commodity-Based OPE

In our model we have three players: Alice, Bob and Ted. We assume that the players are interconnected
by private pairwise channels. The adversary is malicious and may deviate from the original protocol
in an arbitrary way. Ted is a trusted center who pre-distributes some secret data to Alice and Bob
during a setup phase, but does not take part in the protocol later on. The data received by Alice and
Bob is denoted by the random variables Ua ∈ Ua and Ub ∈ Ub, respectively. The pre-distributed data
are chosen independently of the inputs.

In the computing phase, Alice and Bob interact in order to perform an oblivious polynomial
evaluation. We assume that Alice and Bob are randomized players that are supplied by independent
sources of randomness. By using this approach, we simplify notation.

Note that in this way, all the messages generated by Alice and Bob are well-defined random
variables, depending on the polynomial P defined over Fq that Alice chose and on the evaluation
point X0 ∈ Fq that Bob chose. The protocol can have many rounds of communication. Let the
random variable E denote all the messages sent by Bob and R denote all the messages sent by Alice.
As usual, we assume that the messages exchanged by the players are taken from {0, 1}∗.

So, assuming that both parties behave honestly, the views of Alice,ViewA, and Bob, ViewB ,
after the protocol execution will be given by:{

ViewA = {Ua, P, E,R}
ViewB = {Ub, X0, E,R, P (X0)}



Information-Theoretically Secure Oblivious Polynomial Evaluation in the Commodity-Based Model ? 9

3 Bounds

3.1 Remarks on the Adversarial Strategy

More generally, the privacy conditions for an unconditionally secure two-party protocol can be trans-
lated into the following mathematical requirements:{

I(ViewA;V | ViewB) = 0 , thus ViewA ↔ ViewB ↔ V.

I(ViewB ;U | ViewA) = 0 , thus ViewB ↔ ViewA ↔ U.

It means that, if a given protocol fulfills the preceding requirements, the optimal strategy for a
corrupted player, who wishes to gain additional information on the other player’s input, is to apply
some arbitrary processing function (say ϕ(·)) over his/her protocol view. So, we assume that the
outputs, U and V , of a corrupted Alice and a corrupted Bob are processed versions of their protocol
views, ViewA and ViewB , respectively:

U = ϕA(ViewA) and V = ϕB(ViewB)

3.2 Computation of the Optimal Bounds

In the sequel, we prove lower bounds on the memory and communication costs for oblivious polyno-
mial evaluation in the commodity-based model. Since we are interested in OPE protocols that can
be used with any input probability distribution, we assume that the input probability distribution
has some properties (P and X0 are independent and uniformly distributed random variables). To
the specific task of calculating these lower bounds, we consider semi-honest adversaries. In section 4,
we prove that these bounds are tight by presenting a protocol, secure against active cheating, that
achieves all of them.

It is natural to think that, in our scenario, if Bob is given access to Alice’s secret data Ua, he
would be able to break the secrecy condition completely, that is he should be able to learn all the
information about Alice’s input P . We formally prove this fact in the next proposition.

Proposition 1 Bob learns all the information on P if he is given access to Alice’s pre-distributed
data Ua after completing a successful execution of oblivious polynomial evaluation. Mathematically,
H(P |ERUaUb) = 0.

Proof Assume that a successful OPE execution, such P = p(x) and ER = er, has taken place. After
obtaining Alice’s pre-distributed data, Bob can try to compute ER = er for all the possible inputs.
The correct input will produce a transcript equal to the one obtained during the protocol execution.
Furthermore, the condition of security for Bob states that I(X0;U |P ) = 0. Since ERUa is part of
Alice’s view, I(X0;ERUa|P ) = 0 and so

H(X0|ERUaP ) = H(X0|P ) = H(X0),

where the last equality follows from the fact that P and X0 are independent. It follows that for a
given pre-distributed data, no two different polynomials should produce the same view, otherwise
Alice would obtain knowledge on Bob’s inputs (if two polynomials produce the same transcript, Bob’s
choice must be limited to the points where those polynomials coincide).

An equivalent result holds for Alice: if she is given access to the secret data that Bob received
from Ted, she is able to completely break Bob’s privacy condition, i.e., she learns X0.

Proposition 2 Alice learns the point which was chosen by Bob if she is given access to Bob’s pre-
distributed data. Mathematically, H(X0|ERUaUb) = 0.
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Proof Assume a successful OPE execution, such that P = p(x) and ER = er. After this real execution
is finished, we know from proposition 1 that H(P |ERUaUb) = 0. Then, Alice can simulate Bob’s
inputs and determine those that are compatible with the transcript ER = er. By the security
condition for Alice, there cannot be two different values α1 and α2 compatible with the transcript,
otherwise the correctness condition would allow Bob to discover p(α1) and p(α2) (violating Alice’s
security). So it follows that H(X0|ERUaUb) = 0.

We now prove another auxiliary result: namely, that the messages exchanged are independent of
Alice’s and Bob’s inputs P and X0.

Proposition 3 In a secure commodity-based oblivious polynomial evaluation protocol, I(PX0;ER) =
0. In particular, H(P |ER) = H(P ).

Proof We start by rewriting the mutual information of interest:

I(PX0;ER) = I(PX0P (X0);ER)

= I(X0P (X0);ER) + I(P ;ER|X0P (X0))

= I(P (X0);ER|X0) + I(X0;ER) + I(P ;ER|X0P (X0))

Since the security for Bob states that I(X0;U |P ) = 0 and ER is part of Alice’s view, we have that
I(X0;ER|P ) = 0 and so I(X0;ER) = 0 because P is independent of X0. From the security condition
for Alice it follows that I(P ;V |X0P (X0)) = 0 and since ER is part of Bob’s view, we have that
I(P ;ER|X0P (X0)) = 0. Hence we get

I(PX0;ER) = I(P (X0);ER|X0).

It remains to prove that the right hand side is 0. Assume this were not the case.
Intuitively, we get a contradiction because X0 is independent of ER, so Bob could go through

the protocol and after receiving R decide which value P (X1) he wants to obtain information about.
Thus, he could not only learn his allotted P (X0) but also some more information, in violation of
privacy for Alice.

The formal argument involves our technical condition on the distribution of P . Assume that
I(P (X0);ER|X0) > 0 for the purpose of getting a contradiction. Let X1 = X0 + 1; in this way also
X1 takes on all values with positive probability, and the first part of our intuitive argument is valid:
I(P (X1);ER|X1) > 0, because X1 can be generated by Bob independently of ER, just as X0. Now
we can estimate

I(P (X1);X1) < I(P (X1);X1) + I(P (X1);ER|X1)

= I(P (X1);ERX1)

≤ I(P (X1);ERX0X1P (X0))

= I(P (X1);X1X0P (X0)) + I(P (X1);ER|X0X1P (X0))

= I(P (X1);X1) + 0,

a contradiction. We have only used standard identities and inequalities, except for the last line: there
once more security for Alice was brought to bear, and the independence of P (X1) and P (X0) for
X0 6= X1.

Hence our assumption was wrong, and the proposition is proved.

Now, we use the above propositions to prove a lower bound on the size of the data which is
pre-distributed to Alice.

Theorem 3 In any commodity-based unconditionally secure oblivious polynomial evaluation protocol,
the size of the data which is pre-distributed to Alice is as large as the size of the polynomial to be
evaluated: H(Ua) ≥ H(P ).
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Proof Consider I(Ua;P |ERUb): on the one hand we can rewrite it

I(Ua;P |ERUb) = H(P |ERUb)−H(P |ERUaUb)
= H(P )− 0,

by propositions 1 and 3 and the fact that P is independent of Ub. On the other hand,

I(Ua;P |ERUb) ≤ H(Ua|ERUb) ≤ H(Ua),

which, put together with our previous identity, proves the theorem.

Another auxiliary result is actually just a corollary of proposition 3:

Proposition 4 In any commodity-based unconditionally secure oblivious polynomial evaluation pro-
tocol, H(X0P (X0)|ER) = H(X0P (X0)) = H(X0) +H(P (X0)|X0).

Proof Proposition 3 states that I(PX0;ER) = 0. By the data processing inequality, we thus have
I(X0P (X0);ER) = 0, which is just a reformulation of the claim.

Here, we show a bound on the size of the data pre-distributed to Bob.

Theorem 4 In any commodity-based unconditionally secure oblivious polynomial evaluation protocol,
the size of the data which is pre-distributed to Bob is bounded by the following expression: for any
X0 ∈ Fq, H(Ub) ≥ H(X0) +H(P (X0)|X0).

Proof Consider the following expression:

I(Ub;P (X0)X0|ERUa) = H(P (X0)X0|ERUa)−H(P (X0)X0|ERUaUb)
= H(X0) +H(P (X0)|X0)− 0

using proposition 4 for the first entropy term, and proposition 2 (plus correctness of the protocol)
for the second: X0 is a function of E, R, Ua and Ub, and all these data together determine the
polynomial value P (X0) since P is a function of these variables according to proposition 1. On the
other hand,

I(Ub;P (X0)X0|ERUa) ≤ H(Ub|ERUa) ≤ H(Ub),

and with the previous identity the claim is proved.

We end this section with bounds on the size of the messages which have to be exchanged between
Alice and Bob.

Theorem 5 Let R ∈ {0, 1}∗ and E ∈ {0, 1}∗ be the random variables denoting, respectively, Al-
ice’s and Bob’s communication during the computing phase. An unconditionally secure OPE protocol
presents the following bounds:

H(E) ≥ H(X0) and H(R) ≥ H(P ).

Proof For the first bound, use proposition 2 for the first step in the following chain and then inde-
pendence of X0 and RUaUb:

H(X0) = I(X0;ERUaUb)

= I(X0;RUaUb) + I(X0;E|RUaUb)
= I(X0;E|RUaUb) ≤ H(E|RUaUb) ≤ H(E)

For the second one, use proposition 1 for the first step in the following chain and then independence
of P and EUaUb:

H(P ) = I(P ;ERUaUb)

= I(P ;EUaUb) + I(P ;R|EUaUb)
= I(P ;R|EUaUb) ≤ H(R|EUaUb) ≤ H(R).
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4 An Optimal Construction

In this section we present a construction based on polynomials over finite fields which matches the
lower bounds we proved in the last section and is round optimal, thus proving their tightness. The
intuition behind the protocol is that Ted distributes a random evaluation performed on a random
polynomial to Alice and Bob during a setup phase. Later on, they will exchange messages to turn
the random evaluation into the desired one. The protocol is described below.

Protocol OPE

Setup Phase:

• Ted selects uniformly at random a polynomial s(x) of degree n and a point d ∈ Fq.

• Ted sends s(x) to Alice and {d; g = s(d)} to Bob.

Computing Phase: {
Alice’s input: p(x) of degree n.
Bob’s input: x0 ∈ Fq.

• Bob sends t = x0 − d to Alice.

• Alice computes f(x) = p(x+ t) + s(x) and sends it to Bob.

• Bob computes f(d)− g = p(d+ t) + s(d)− s(d) = p(x0), the desired output.

Theorem 6 The above stated protocol is a secure implementation of an oblivious polynomial evalu-
ation protocol. Moreover, it is optimal regarding its space complexity.

Proof

(Correctness)

It is easily verifiable the correctness of the protocol. Considering both parties to be honest, we obtain

f(d)− g = p(d+ t) + s(d)− s(d) = p(x0)

which proves the correctness property.

(Security for Alice)

Let Alice be honest and x′0 = d+ t. Then,

I(P ;X ′0|X0) = I(P ;D + T |X0) = 0

since D is independent of P .

Now we demonstrate that the second condition for Alice is satisfied. Let ViewB = {D,G, T, F,X0, X
′
0, P (X ′0)}

be Bob’s view of the protocol execution. Bob’s output V will be a processed version of ViewB , con-
sequently,
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I(P ;V |X0X
′
0P (X ′0)) ≤ I(P ;ViewB |X0X

′
0P (X ′0))

= I(P ;DGTF |X0X
′
0P (X ′0))

= I(P ;DGF |X0X
′
0P (X ′0)) (1)

= I(P ;DG|X0X
′
0P (X ′0)) (2)

= 0.

Equation (1) follows from the fact that t = x′0 − d is a function of d and x′0. Equation (2) follows
from the fact that f(x) = p(x+ t) + s(x), where S is uniformly random and independent of P . The
last step results from the independence between the pre-distributed data D,G and the polynomial
P .

(Security for Bob)

Let Bob be honest and f(x) = p′(x+ t) + s(x). Let ViewA = {S, T, F, P, P ′} be Alice’s view of the
protocol execution. Alice’s output U will be a processed version of ViewA, consequently,

I(X0;U |P ) ≤ I(X0;ViewA|P )

= I(X0;STFP ′|P )

= I(X0;STF |P ) (3)

= I(X0;SF |P ) (4)

= 0.

Equation (3) follows from the fact that p′(x) = f(x − t) − s(x − t), i.e., P ′ is fully determined by
S, T and F . Equation (4) follows from the fact that t = x0 − d, where D is uniformly random and
independent of X0. The last step results from the fact that f(x) = p′(x + t) + s(x), where the data
pre-distributed to Alice, S, is independent of Bob’s input, X0.

(Optimality)

Follows from the lower bounds obtained in theorems 3, 4 and 5.

5 Oblivious Linear Functional Evaluation

A linear functional l on a vector space W is defined as a function l : W → R, which satisfies the
following properties: {

l(v + w) = l(v) + l(w).
l(αw) = αl(w).

We generalize the previous OPE protocol to the case where Bob inputs w ∈ W (vector space) and
Alice inputs a linear functional l ∈ W∗ (the dual vector space of linear functionals on W). This task
is called Oblivious Linear Functional Evaluation (OLFE). First, notice that evaluating a polynomial
p(x) = a0 + a1x + a2x

2 + . . . + anx
n on a point x0 is the same as evaluating the linear functional

l = (a0, a1, . . . , an) (as a row vector) on the (column) vector w = (1, x0, x
2
0, . . . , x

n
0 )T . Thus OPE can

be seen as a particular case of oblivious linear functional evaluation. This idea can be generalized to
affine linear functionals, but we chose not to break the inherent beautiful symmetry via duality of
the problem.

The choices of Alice and Bob are modeled by the random variables L and W , which can have
arbitrary probability distributions. The security conditions are analogous to the ones for OPE. The
ideal functionality fOLFE is denoted by

fOLFE(L,W ) := (⊥, L(W )).

Next theorem formalizes the conditions for a secure implementation of OLFE.
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Theorem 7 A protocol Π realizes an OLFE perfectly securely if and only if for every admissible
pair of algorithms A = (A1, A2) for protocol Π and for all inputs (L,W ) and auxiliary input Z, A
produce outputs (U, V ) such that the following conditions are satisfied:

– (Correctness) If both players are honest, then

(U, V ) = (⊥, L(W )).

– (Security for Alice) If Alice is honest, then we have U =⊥ and there exists a random variable W ′,
such that

I(L;W ′|ZW ) = 0, and I(L;V |ZWW ′L(W ′)) = 0.

– (Security for Bob) If Bob is honest, then we have

I(W ;U |ZL) = 0.

Proof We have to prove the equivalence between the privacy conditions for Bob in Theorems 1 and
7. This proof is analogous to the previous one.

According to Theorem 1, we must have that

I(W ;L′|ZL) = 0 and I(L(W )W ;U |ZLL′U ′) = 0.

or equivalently,
I(W ;L′|ZL) + I(L′(W )W ;U |ZLL′) = 0.

L′(W ) is a function of W and the linear functional L′ so

I(L′(W )W ;U |ZLL′) = I(W ;U |ZLL′) + I(L′(W );U |WZLL′)

= I(W ;U |ZLL′).

Then, the expression I(L′(W )W ;U |ZLL′) = 0 is equivalent to I(W ;U |ZLL′) = 0.

Applying the chain rule for mutual information we obtain

I(W ;L′|ZL) + I(W ;U |ZLL′) = I(W ;L′U |ZL)

= I(W ;U |ZL) + I(W ;L′|ZLU)

= I(W ;U |ZL).

The last equality follows from the fact that, in a secure OLFE implementation, L′ and W have to
be independent given ZLU . One can observe that, at the beginning of the protocol, Bob chooses his
vector W independently from L′, the linear functional actually supplied by Alice. Furthermore, we
should require that the action of providing to the protocol a different input does not lead to any
advantage to a malicious Alice. I.e., given that Alice knows ZLU , her knowledge on L′ does not
give her any additional information on Bob’s input W . Mathematically, W , ZLU and L′ will form a
Markov Chain:

W ↔ ZLU ↔ L′ ⇒ I(W ;L′|ZLU) = 0.

Therefore, the security condition for a honest Bob is reduced to:

I(W ;U |ZL) = 0.

Next, we present our construction of oblivious linear functional evaluation protocol. The intuition
behind the protocol is similar to the one behind OPE. In the pre-distribution phase, Ted selects a
random affine linear function and a random evaluation on the function and sends them to Alice and
Bob, respectively. Subsequently, during the computing phase, Alice and Bob exchange information
in order to obtain the desired result.

Protocol OLFE
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Setup Phase:

• Ted selects with uniform randomness an affine linear function m and a uniformly random
d ∈ W.

• Ted transmits the function m to Alice and the point {d ; c = m(d)} to Bob.

Computing Phase: {
Alice’s input: l ∈ W∗.
Bob’s input: w ∈ W.

• Bob sends t = w− d to Alice.

• Alice sends the function n := l +m+ l(t) to Bob.

• Bob computes n(d)− c = l(d) +m(d) + l(w− d)−m(d) = l(w).

Theorem 8 The above stated protocol is a secure implementation of an oblivious linear functional
evaluation protocol.

Proof
(Correctness)

It is immediate to verify the correctness of the protocol. Considering both parties to be honest, we
obtain

n(d)− c = n(d)−m(d) = l(d) + l(w− d) = l(w)

(Security for Alice)

Let Alice be honest and w′ = d + t. As a consequence,

I(L;W ′|W ) = I(L;D + T |W ) = 0

since D is independent of L.

We shall now demonstrate that the second security condition for Alice also holds. Let ViewB =
{D,C, T,N,W,W ′, L(W ′)} be Bob’s view of the protocol execution. Bob’s output V will be a pro-
cessed version of ViewB , consequently,

I(L;V |WW ′L(W ′)) ≤ I(L;ViewB |WW ′L(W ′))

= I(L;DCTN |WW ′L(W ′))

= I(L;DCT |WW ′L(W ′)) (5)

= I(L;DC|WW ′L(W ′)) (6)

= 0.

Equation (5) follows from the fact that n = l + m+ l(t) is a function of l,m, and t, such that M is
a random variable uniformly distributed and independent of L. Equation (6) follows from the fact
that t = w− d is a function of d and w. The last step is a consequence from the fact that the data
pre-distributed to Bob, D,C is independent of Alice’s input L.

(Security for Bob)
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Let Bob be honest. Let ViewA = {M,N, T, L, L′}. Alice’s output U will be a processed version of
her view, ViewA, consequently,

I(W ;U |L) ≤ I(W ;ViewA|L)

= I(W ;MNTL′|L)

= I(W ;MNT |L) (7)

= I(W ;MN |L) (8)

= 0.

Equation (7) follows from the fact that l′+ l′(t) = m−n, i.e., L′ is fully determined by M , N , L and

T . Equation (8) follows from the fact that t = w−d, where D is uniformly random and independent
of W . The last step results from the fact that n = l′ + m + l′(t), where the data pre-distributed to
Alice, M , is independent of Bob’s input, W .

6 Conclusions

In this paper we introduced and solved the problem of efficiently evaluating polynomials obliviously
within the so-called commodity-based cryptography, as proposed by Beaver [2]. We proposed a model
and then proved bounds on the amount of “commodities” which have to be pre-distributed by the
trusted center, thus providing bounds for the amount of memory required by the players engaged
in the protocol, as well as bounds on their communications. Then, we proved the tightness of our
bounds by showing an explicit construction which meets them.

We also presented in this paper a definition of security for oblivious polynomial evaluation which
is equivalent to the standard definition based on the real/ideal model paradigm. In the light of this new
definition, we proved the unconditional security of our schemes. Finally, we proposed a generalization
of oblivious polynomial evaluation: oblivious linear functional evaluation.
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