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ABSTRACT
Data-driven applications are engines of economic growth and es-
sential for progress in many domains. The data involved is often of
a personal nature. We propose a decentralized information market-
place where data held by data providers, such as individual users
can be made available for computation to data consumers, such as
government agencies, research institutes, or companies who want
to derive actionable insights or train machine learning models with
the data while (1) protecting input privacy, (2) protecting output
privacy, and (3) compensating data providers for making their sen-
sitive information available for secure computation. We enable this
privacy-preserving data exchange through a novel and carefully
designed combination of a blockchain that supports smart contracts
and two privacy-enhancing technologies: (1) secure multi-party
computations, and (2) robust differential privacy guarantees.

CCS CONCEPTS
• Security and privacy → Economics of security and privacy;
Privacy protections;Management and querying of encrypted
data; Privacy-preserving protocols; • Theory of computation
→ Cryptographic protocols.

KEYWORDS
Data holder, data consumer, data economy, privacy budget, Differ-
ential Privacy, Secure Multiparty Computation, blockchain.
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1 INTRODUCTION
We live in a data science ecosystem where the large-scale collec-
tion and processing of data have become commonplace. Personal
information is routinely collected by companies and government
agencies without giving individuals much control over how their
data is used, or the benefits they receive in return for their data.
The tension between the desire to promote an economy based on
free-flowing data on one hand, and the need to protect privacy on
the other hand — as reflected in new regulations such as the GDPR1,
the CCPA2, and the AI Bill of Rights3 — can be eased by Privacy-
Enhancing Technologies (PETs), as we do in this work. We propose
a decentralized information marketplace where data held by data
providers — such as individual users — can be made available for
computation to data consumers — such as government agencies,
research institutes, or companies who want to derive actionable
insights or train machine learning models with the data — while (1)
protecting input privacy, (2) protecting output privacy, and (3) com-
pensating data providers for providing their sensitive information
as input for secure computations.

Input privacy means keeping the input data delivered by the data
providers hidden from the data consumers, or from any parties
performing computations on behalf of the data consumers. It is
commonly achieved through the use of cryptographic techniques
such as Secure Multiparty Computation (MPC) [17] that enable
computations over data while it stays encrypted. The obtained
outputs are in principle the same as one would obtain with com-
putations over a plaintext version of the data. While often hailed
as a strength, the latter is problematic when the outputs – such as
trained machine learning (ML) models – are disclosed to the data

1European General Data Protection Regulation https://gdpr-info.eu/
2California Consumer Privacy Act https://oag.ca.gov/privacy/ccpa
3https://www.whitehouse.gov/ostp/ai-bill-of-rights/
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consumer, as outputs leak information about the underlying input
data that can be recovered via adversarial attacks [15, 21, 37, 40].

Output privacy refers to obfuscating the output so that the ability
of such attacks is greatly hindered. It is commonly achieved through
Differential Privacy (DP) mechanisms [20] that perturb the outputs
by adding noise, the amount of which is controlled by a privacy
budget 𝜖 . In general, a smaller value of 𝜖 means that more noise is
added, and privacy is better protected.

Orthogonal to the above, compensating data providers can be
done via blockchain-based smart contracts. The concept of smart
contract was first introduced by Szabo in 1997 [38] and implemen-
tations of smart contract are available in many current blockchain
platforms, e.g. [14, 43].

While there is existing work on data marketplaces in which data
providers get compensated for their data, including approaches that
aim to protect input privacy [6, 26, 33, 36], there is a substantial gap
in the literature on solutions that provide output privacy as well.
To the best of our knowledge, the only proposal that provides both
input privacy and output privacy in an information marketplace
is centralized, relying on a single trusted execution environment
(TEE), which is essentially a trusted third party [24]. A major tech-
nical challenge to develop a DP backed data marketplace (for output
privacy), combined with decentralized techniques such as MPC and
blockchain protocols (for input privacy and financial compensa-
tion), is that DP assumes the existence of a trusted curator who
perturbs the outputs by adding noise proportional to 𝜖 . We propose
the first framework that formally and rigorously enables:
(1) Automatic financial compensation for data providers. Par-

ticipants who provide data are automatically compensated via
cryptocurrency tokenswhen their data is used to answer queries
by data consumers, where the nature of the queries can range
from simple counting queries to advanced queries like training
ML models.

(2) Input privacy. The data submitted by the data providers is han-
dled via a privacy-preserving smart contract (PPSC) constructed
by combiningMPC and standard (non-privacy-preserving) smart
contracts in order to orchestrate anMPC computation of queries
to offer meaningful results to data consumers.

(3) Output privacy. The application of DP, in particular a privacy
budget control, assures the users control of their information
and prevents misuse by the data consumers.

(4) Decentralization. Our framework is fully decentralized via
the use of PPSCs based on MPC and standard smart contract
platforms. To provide output privacy in a decentralized setting,
we replace the central aggregator from the global DP paradigm
by MPC protocols for noise generation. In other words, our
proposed setting is not based on any trusted third party.

2 RELATEDWORK
We characterize solutions for building privacy-preserving data mar-
ketplaces by whether or not they address compensation, input or
output privacy, and operate in a decentralized manner. By viewing
related works through this lens, our contribution is pronounced, as
it is the only work that exhibits all four attributes (Tab. 1).

A whole line of research has emerged to explore how combin-
ing MPC techniques with cryptocurrencies and smart contracts

can facilitate private data trading. The blockchain infrastructure is
used to orchestrate MPC protocols that carry-out query-answering
computations to data consumers while managing the agreed-upon
compensations. The MPC computations are used to maintain input
privacy for the data providers. Similarly, fairness is also an outcome
in a body of work that uses ’proofs of cheating’ [7] to detect mali-
ciously acting participants and penalizing them financially, thereby
protecting honest data providers. Upon verifying honest behavior,
the smart contracts distribute financial rewards according to the
results of the computation/application [1, 3, 4, 7–12, 18, 19, 29–
31]. The vast majority of previous works on privacy-preserving
information marketplaces only address input privacy. While oper-
ating completely decentralized, they do not provide output privacy,
thereby leaving data providers vulnerable to reconstruction attacks
once the data is shared with the consumer.

To the best of our knowledge, there is only one information
marketplace demonstrated in the literature that guarantees output
privacy [24]. It utilizes DP, and tracks the privacy budget as data
consumers make queries so that providers’ data leakage is limited.
Queries using higher amounts of ’privacy budget’ 𝜖 can be made
to cost more, as they provide greater utility (less noise) to the
data consumer, but leak more privacy. The approach by Hynes
et al. [24] is centralized as it assumes the use of a TEE, which
is essentially a trusted third party. Moreover, TEEs are prone to
known vulnerabilities [25] that may undermine both input and
output privacy by allowing the adversary to (partially) learn TEEs’
internal states. To the best of our knowledge, an approach that
provides compensation, input privacy, and output privacy in a
decentralized manner, as we propose in this paper, has not yet been
described in the open literature.

A plausible explanation for the gap in literature on decentralized
marketplaces that provide DP is that the DP paradigm is inherently
centralized, in the sense that it assumes the existence of a central
curator who receives all the data, performs computations over it,
and adds noise to the outputs before disclosing them. Solutions
for providing DP in a decentralized manner, including approaches
based on replacing the central curator byMPC protocols that are run
by distributed servers, have recently been proposed by us and others
for training convolutional neural networks (CNNs) [23, 41, 44],
decision trees [41], linear support vector machines [41], logistic
regression models [34], and even for generating synthetic data [35].
While providing both input and output privacy, these methods
were proposed outside of the context of data marketplaces. Unlike
the approach that we propose in this paper, they do not include
a compensation mechanism, and instead tacitly assume that data
providers are willing to donate their data for free and without any
control over the privacy budget.

3 THE FRAMEWORK
We divide this section into three parts. We start describing our
framework by (1) detailing the main entities involved in the market-
place and how they interact. Then, (2) we introduce the adversary
model and the security definitions relevant to our proposed sys-
tem. Finally, (3) we outline each of the phases of our decentralized
information market protocol.
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Table 1: Work on privacy-preserving data marketplaces
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Hynes et al., 2018 [24] ✓ ✓ ✓
Koch et al., 2022 [27] ✓ ✓ ✓
Abadi et al., 2023 [1] ✓ ✓ ✓

Koutsos et al., 2021 [28] ✓ ✓ ✓
Baum et al., 2020 [7] ✓ ✓ ✓
Baum et al., 2021 [10] ✓ ✓ ✓
Baum et al., 2022 [11] ✓ ✓ ✓
More et al., 2022 [32] ✓ ✓ ✓

Giaretta et al., 2021 [22] ✓ ✓ ✓
Weng et al., 2021 [42] ✓ ✓

Aljohani et al., 2023 [2] ✓ ✓
Chen et al., 2021 [16] ✓ ✓
Tian et al., 2022 [39] ✓ ✓ ✓

Andrychowicz et al., 2014 [3] ✓ ✓ ✓
Our Solution ✔ ✔ ✔ ✔

3.1 Marketplace Actors and Building blocks
There are two types of actors in our marketplace:
• Data Consumers C𝑗 : These are organizations that are interested
in computing queries (e.g. getting statistics or training ML mod-
els) on private information from data providers. Data consumers
are willing to provide financial compensation for the input data
used in their queries. Real world examples of such organizations
are the U.S. Census Bureau, content providers who want to per-
sonalize their services to their customers, research institutions,
etc.;

• Data Providers D𝑖 : These are entities willing to provide personal
data for privacy-preserving analysis in exchange for a financial
reward. Data providers can be individuals, data brokers, retail-
ers, or any other organization interested in providing data for
financial benefit.
We employ smart contracts [38] to automate our marketplace

and enforce its privacy guarantees. In a nutshell, smart contracts are
programs deployed on top of a cryptocurrency platform based on a
distributed public ledger (e.g. a blockchain). These programs, each
of them with its respective state, are executed by the nodes who
maintain the cryptocurrency platform, automatically altering their
internal states and outputting financial transactions when activated
by input transactions (containing both financial tokens and data).
Regular smart contracts (e.g. [14, 43]) are unable to handle confiden-
tial inputs since all input transactions are publicized in the public
ledger. However, our marketplace crucially relies on the abilities (1)
to process queries on input data privately (achieving input privacy)
and (2) to ensure that query outputs do not leak input data (achiev-
ing output privacy). Hence, we build on privacy-preserving smart
contracts (PPSC) made possible by recent developments [7, 10, 11]
in the intersection of distributed ledger technology and privacy
preserving computation:
• Privacy Preserving Smart contracts (PPSC): Our central building
block are PPSCs [7, 10, 11] deployed on a public ledger, which

automatically process input transactions and issue output trans-
actions while maintaining the smart contract internal state pri-
vate. We assume an arbitrary data consumer C𝑗 can instantiate a
PPSC R 𝑗 , depositing a certain amount of cryptocurrency tokens
to be distributed as rewards and establishing the parameters of
the queries it wishes to compute. The PPSC will orchestrate the
marketplace operations for obtaining data from data providers,
performing privacy-preserving computations on such data and
automatically compensating data providers with cryptocurrency
tokens from the reward pool provided by data consumers.
In the description of our protocol, i.e., Section 3.3, we assume that

a PPSC platform is given as an ideal resource, i.e. as an incorruptible
black-box building block. Later on, we discuss how such a PPSC can
be constructed departing from a standard non-privacy-preserving
smart contract platform and standard cryptographic techniques
via [7, 10, 11].

3.2 Security Definitions and Adversarial Model
A randomized algorithm M is called 𝜖-DP if for each pair (𝐷1, 𝐷2)
of adjacent datasets (i.e., datasets that differ in only one entry),
and for each subset 𝑂 of the range of M, 𝑃𝑟 [M(𝐷1) ∈ 𝑂] ≤
𝑒𝜖𝑃𝑟 [M(𝐷2) ∈ 𝑂]. The parameter 𝜖 ≥ 0 denotes the privacy
budget, with smaller values indicating stronger privacy guarantees.
DP ensures that the inclusion or exclusion of any entry in the
dataset is obscured, in the sense that any output obtained from
computations over the dataset would have been similarly likely to
be reached whether the entry was present in the dataset or not.
This definition can be relaxed by adding a constant 𝛿 , resulting in
what we call approximate differential privacy: 𝑃𝑟 [M(𝐷1) ∈ 𝑂] ≤
𝑒𝜖𝑃𝑟 [M(𝐷2) ∈ 𝑂] + 𝛿 . Our proposed marketplace and protocols
can be applied to this approximate differential privacy scenario too.
However, for the sake of simplicity, and due to space restrictions,
we limit our discussion to the case where 𝛿 = 0.

We consider a static active probabilistic polynomial-time (PPT)
adversary A, i.e. a computationally bounded adversary who may
corrupt any subset of data providers D or data consumers C be-
fore the protocol execution starts, and deviates from the protocol
arbitrarily. We want to ensure the following security and privacy
properties for D and C against such an adversary A:
• Input Correctness: Given a publicly available specification of the
format and properties expected from the data submitted by data
providers, it is infeasible for an A that corrupts a data provider
D𝑖 ∈ D to submit non-compliant data that does not adhere to
this specification;

• Output Correctness: Given a publicly available specification of a
query requested by a data consumer C𝑗 and data provided by a
subsetD′ ⊂ D, it is infeasible for anA corrupting any subset of
D and C \ C𝑗 to convince C𝑗 that an arbitrary output different
from that of computing the specified query on input data from
D′ is valid;

• Input Privacy: It is infeasible for any A corrupting a subset
C′ ⊂ C and a subset D′ ⊂ D to obtain any information but the
query outputs obtained by corrupted C′ and the inputs provided
by the corrupted subset D′;

• Output Privacy: It is infeasible for any A corrupting a subset
C′ ⊂ C and a subset D′ ⊂ D to violate the DP guarantees
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of honest D \ D′ with respect to the outputs obtained by the
corrupted subset C′;

• Payment Fairness: It is infeasible for anyA corrupting the subsets
C′ ⊂ C and D′ ⊂ D to prevent honest D \ D′ from receiving
payment when their input data is used to compute a query output
obtained by any member of C.

3.3 Protocol Outline
For the sake of simplicity, we state a protocol for the case when a
data consumer C𝑗 is interested in the result of a query over data
provided by a set of data providers D. Our framework generalizes
to more complicated settings, such as training of ML models. We
start by providing the intuition of the inner workings and usage of
the protocol, before concretely outlining its phases.

Intuition. Our protocol works by having a data consumer C𝑗 ∈ C
create a PPSC R 𝑗 , specifying the query it wants to perform on data
from providers, and depositing cryptocurrency tokens into it. This
PPSC specifies the type of the query, the DP level of privacy that
will be guaranteed for this query, how many users will have their
data used for this DP query, and the financial rewards paid to
each data provider if the threshold of the number of participants is
reached and the DP query is performed. Needless to say that the data
consumer may advertise such requests to potential data providers
using other external channels in order to increase awareness about
the PPSC that was created.

Data providers D𝑖 ∈ D who wish to contribute their data inter-
act with the PPSC R 𝑗 in order to privately submit their respective
data with the guarantee that they will be rewarded if the query
computation executes. Additionally, in order to cope with D pro-
viding non-compliant data to the protocol, we note that R 𝑗 verifies
the compliance of the data using zero knowledge proofs of data
validity submitted by each contributing D𝑖 . R 𝑗 enforces the poli-
cies specified by C𝑗 , and automatically pays (via cryptocurrency)
the data providers according to the pre-specified rules once the
DP query is executed. Notice that the PPSC keeps all of its input
queries and its internal state private, achieving input privacy. The
set of rules can also specify a minimal amount of data samples
to be collected in order to start performing the query from C𝑗 in
order to ensure a minimal data utility threshold. The query result
is disclosed privately to C𝑗 (e.g. in encrypted form).

For the sake of simplicity, we focus on protocols designed to han-
dle a single query. Extending our proposal to accommodate multiple
queries can be achieved by incorporating additional settings in the
privacy-preserving smart contract. These settings would specify
the total number of queries, and an extra verification step would
be added to ensure the availability of the privacy budget before
revealing the results of subsequent queries.

Phases of the Protocol. In this protocol, a data consumer C𝑗 ∈ C
who wishes to compute a query interacts with data providers D𝑖 ∈
D who hold private data by means of a PPSC. The interaction takes
place in the following phases:

(1) Phase 1 - Query Request. In this phase C𝑗 publishes a request
for data.

(a) C𝑗 creates a PPSC R 𝑗 . R 𝑗 specifies: the type and format of
the data used to compute the query; the minimum number
of data samples necessary for computing the query; the

privacy budget 𝜖 specified for the query, the payment for
each data sample provided by data providers.

(b) C𝑗 publicises the smart contract and waits for D𝑖 ∈ D.
(2) Phase 2 - Data Collection. If not enough data is available,

this phase waits for D𝑖 ∈ D to submit their data. Otherwise,
if a query is required and data is already available, proceed
directly to Phase 3 - Query Output.

(a) D𝑖 ∈ D privately send their data to R 𝑗 along with a zero
knowledge proof4 of data validity (to avoid D𝑖 providing
non-compliant data). R 𝑗 verifies in zero knowledge the
correctness of the data and accepts or rejects it.

(b) If R 𝑗 accepts D𝑖 ’s transaction, it registers D𝑖 ’s input data.
(3) Phase 3 - Query Output. In this phase, R 𝑗 performs the

query, and provides (1) the output to C𝑗 and (2) the payment
to D𝑖 ∈ D who contributed data. Thus, R 𝑗 proceeds as
follows:

(a) Check that the minimum threshold of data points (speci-
fied by C𝑗 ) is reached. If either requirement is not satisfied,
ignore next steps;

(b) Perform the query, adding noise to the output using an
appropriate DPmechanism publicly specified by C𝑗 via the
PPSC conditions, and release the result of the computation
to C𝑗 ;

(c) Pay reward to each D𝑖 who provided data for the query;

4 SECURITY AND PRIVACY ANALYSIS
In this section, we provide a sketch of the security and privacy
analysis of our solution with respect to the security guarantees and
adversarial model we specified in Section 3.2. In the full version of
our paper we present rigorous security definitions and proofs in
the Universal Composability framework [13]. For this short version,
assuming that we have access to an ideal PPSC (which we explain
how to realize in the next section), we argue that the security
guarantees are preserved as follows:
• Input Correctness: D𝑖 must provide a zero knowledge proof of
input data validity attesting that its submitted data fulfills the
format and properties specified by C𝑗 in public conditions of
R 𝑗 . Hence, due to the soundness of such proof, it is infeasible
for an A corrupting D𝑖 to pass the checks performed by R 𝑗 in
step (a) of Phase 2;

• Output Correctness: This follows from the fact that R 𝑗 guar-
antees that the query specified by C𝑗 in step (a) of Phase 1 is
correctly computed on the data provided by D′ ⊂ D in step
(b) of Phase 3;

• Input Privacy: This follows from the fact that R 𝑗 guarantees
that all anA corrupting a subset C′ ⊂ C and a subset D′ ⊂ D
can learn are the query outputs delivered to C′ in step (b) of
Phase 3 and the inputs owned by D′. All other internal state
of R 𝑗 is kept private;

• Output Privacy: This follows from input privacy and the fact
that R 𝑗 correctly executes the DP mechanism in step (b) of
Phase 3 before disclosing the query output to C𝑗 ;

4The PPSC R 𝑗 guarantees privacy for its inputs and internal state, so it could directly
check validity predicates on data provider inputs. However, providing a zero knowledge
proof of data validity allows third party entities to verify data validity even before the
data is processed by the PPSC, saving on the cost of PPSC execution.
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• Payment Fairness: This follows from the fact that R 𝑗 automati-
cally rewards each honest D \ D′ who provided input data to
a query in step (c) of Phase 3.

5 INSTANTIATING THE BUILDING BLOCKS
The central component of our proposed framework is a PPSC, which
we realize from a number of standard cryptographic building blocks.
Moreover, we utilize zero knowledge proofs and DP mechanisms
in crucial steps of our protocol. In this section, we discuss potential
instantiations for each building block used in our construction.

Privacy Preserving Smart Contract.We instantiate a privacy-
preserving smart contract departing from the approach of Insured
MPC [7]. In this framework, a standard non-privacy-preserving
smart contract is used to orchestrate the execution of an MPC pro-
tocol, which computes the PPSC instructions on the private input
data, delivering (private) outputs to the parties who contributed
financially. Moreover, financial transactions are automatically gen-
erated according to the MPC output.

Unlike what we need for our datamarketplace, InsuredMPC does
not distinguish between clients who input data (data providers)
or deposit cryptotokens (data consumers) and servers who per-
form the actual computations. Instead, in Insured MPC, each party
who wishes to participate in the PPSC execution registers itself
by sending public transactions to the orchestration smart contract,
depositing cryptocurrency tokens that will be traded according to
the output of the MPC. After all parties are registered, they execute
an MPC protocol that performs the actual privacy-preserving com-
putation on their inputs. As per the standard security guarantees of
MPC, this approach guarantees that, as long as at least one of the
parties executing the MPC protocol is honest, only the output is
learned by each party, preserving the privacy of the internal state
of the PPSC and the input data.

While it implements the kind of PPSC that we require with Uni-
versally Composable security [13], the Insured MPC approach has
two important caveats: (1) it requires the parties who provide input
to execute the underlying MPC protocol; (2) the underlying MPC
protocol with the necessary properties has a high concrete over-
head in relation to state-of-the-art MPC protocols. In order to solve
these issues, we employ techniques from P2DEX [10], which allows
for data providers to very cheaply provide “encrypted” versions of
their private inputs to servers who execute the MPC protocol and
then provide the outputs to the data consumer. Moreover, using the
techniques from P2DEX, our PPSC can be instantiated from any
state-of-the-art MPC protocol without extra overheads.

This so-called outsourced MPC model is optimal for our scenario,
where data providers simply provide their inputs to the PPSC but
do not wish to be encumbered by a complex cryptographic protocol
execution. Instead the MPC execution is outsourced to servers
that can be automatically rewarded for this task (similarly to the
parties who execute the underlying standard smart contract and
cryptocurrency platform). In this case, our privacy and correctness
guarantees are maintained if at least one of the servers executing
the underlying outsourced MPC is honest. Notice that now it is
the servers that provide the orchestration smart contract with the
computed outputs, plus proofs of validity.

In scenarios where our market place must also protect the fi-
nancial transactions handled by the PPSC, we further augment our
PPSC instantiation using techniques from Eagle [11], which has
all properties from Insured MPC and the efficiency from P2DEX
while allowing for the resulting PPSC to receive and output privacy-
preserving financial transactions. While this is not the focus of our
work, this property may be desirable in scenarios where the very fi-
nancial transactions executed by data providers and data consumers
may leak information about private data.

MPC InfrastructureWe propose to use the SPDZ protocol for the
case of malicious adversaries allowed to corrupt a majority of the
servers. If we restrict the adversary to corrupt less than 2/3 of the
players and be honest-but-curious, we propose to use the protocol
by Araki et al. [5].

Protocols for Handling Differential Privacy DP traditionally
assumes the existence of a trusted curator that has direct access
to the data, computes a query in the clear, samples noise from a
pre-specified probability distribution according to a DP mechanism,
adds the noise to the query result and makes it public. To remove
this central point of failure from our framework, we replace the
trusted curator by privacy-preserving smart contracts. The noise
generation happens in the underlying MPC protocol, specified in
the smart contract, and executed by multiple computing parties. We
have already proposed and implemented several of such protocols
[34, 35].

6 CONCLUSION
In this paper we have outlined how to create a decentralized data
marketplace with input and output privacy, in which data providers
are automatically rewarded and an audit trail of all privacy guar-
antees, including the privacy budget, is kept. As described, this
can be achieved by combining existing privacy-preserving smart
contracts (PPSCs) based on Secure Multiparty Computation (MPC)
and MPC protocols to perform Differential Privacy (DP) queries
without reliance on a central aggregator. While one can use existing
constructions for each of these technical building blocks, an im-
portant next step is the development of more efficient, tailor-made
MPC protocols for exact tasks that need to be handled in the data
marketplace.
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