
A Survey on Design and Implementation of Protected
Searchable Data in the Cloud

Rafael Dowsley

Cryptography and Security Research Group, Department of Computer Science,
Aarhus University, Aarhus, Denmark

Email: rafael@cs.au.dk

Antonis Michalas∗

Cyber Security Group, Department of Computer Science,
University of Westminster, London, UK

Email: a.michalas@westminster.ac.uk

Matthias Nagel∗

Institute of Theoretical Informatics,
Karlsruhe Institute of Technology, Karlsruhe, Germany

Email: matthias.nagel@kit.edu

Nicolae Paladi∗

Security Lab, SICS Swedish ICT,
Kista, Sweden

Email: nicolae@sics.se

Abstract

While cloud computing has exploded in popularity in recent years thanks to the
potential efficiency and cost savings of outsourcing the storage and management
of data and applications, a number of vulnerabilities that led to multiple attacks
have deterred many potential users.

As a result, experts in the field argued that new mechanisms are needed
in order to create trusted and secure cloud services. Such mechanisms would
eradicate the suspicion of users towards cloud computing by providing the nec-
essary security guarantees. Searchable Encryption is among the most promising
solutions – one that has the potential to help offer truly secure and privacy-
preserving cloud services. We start this paper by surveying the most important
searchable encryption schemes and their relevance to cloud computing. In light
of this analysis we demonstrate the inefficiencies of the existing schemes and
expand our analysis by discussing certain confidentiality and privacy issues.
Further, we examine how to integrate such a scheme with a popular cloud plat-
form. Finally, we have chosen – based on the findings of our analysis – an

∗Corresponding Author.

Preprint submitted to Computer Science Review Journal August 14, 2017

existing scheme and implemented it to review its practical maturity for deploy-
ment in real systems. The survey of the field, together with the analysis and
with the extensive experimental results provides a comprehensive review of the
theoretical and practical aspects of searchable encryption.

Keywords: Searchable Encryption, Security, Cloud Computing, Cloud
Storage

1. Introduction

In recent years we have witnessed an astonishing increase in the offer of cloud
computing solutions. Leveraging savings through large scale optimizations and
reduction of wasted resources (inactive computer time, unused hardware space,
etc), this business model offers clear economic advantages. Along with the con-5

tinuous increase in the amount of data, this provides a strong incentive for both
organizations and private users to opt for storing their data with cloud service
providers (CSPs). However, this trend raises a security issue, since many clients
want to keep their files confidential. The solution may be to encrypt the files
before sending them to the CSP, but there are two seemingly contradictory goals10

that an encryption scheme should achieve in order to be useful in this scenario.
On one hand, the encryption must satisfy a strong notion of security in order to
keep the data hidden from the CSP. On the other hand, the scheme should allow
the clients to continue performing their operations efficiently, i.e., with time and
computational costs comparable to the ones for locally stored files. Searching15

often a quintessential requirement for many clients. It is therefore essential to
develop and employ encryption schemes that allow for efficient searching of the
data stored in the cloud; if the clients have to download the entire data set and
perform the search locally, then the scheme is completely impractical.

Searchable Encryption (SE) is an enhanced encryption technique that allows20

encryption while enabling search for keywords in the encrypted data (as it would
be possible in the plaintext). Its quintessential application is cloud storage.
Using searchable encryption should enable a CSP – with the help of a search
token sent by the client – to locally perform some operations and then send the
relevant data to the client. The relevant data should on one hand contain the25

matching documents (i.e., the documents that contain the searched keyword),
while on the other hand its size should be not much larger than that of the
matching documents (i.e., the server cannot simply transfer a large part of the
database to the client on every query). Of course the CSP should not learn
the keyword that is being searched or the search query, otherwise he is learning30

partial information about the documents.
Searchable encryption clearly displays trade-offs between efficiency, func-

tionality and security. From an efficiency point of view, it is desirable to reduce
as much as possible the number of operations performed by the server during
a search. It is also highly important to make these operations parallelizable35

and increase their locality (in order to improve I/O performance), in order to

2

improve the search time. From the functionality point of view, one important
parameter is the query expressiveness. An SE scheme should support as power-
ful queries as possible, thus increasing the usefulness of the scheme to the clients.
Other important parameters are whether a single or multiple clients should be40

able to write data to the cloud and whether a single or multiple clients should be
able to read the data. Additionally, schemes for practical applications should be
dynamic, i.e., they should allow database updates without additional leakage.
From a security point of view, it is essential to reduce the leakage caused by all
operations as much as possible.45

Depending on the requirements of the desired scheme, it possible to use
either public-key cryptography or symmetric-key cryptography. However, of-
ten searchable public-key encryption schemes with good security guarantees do
not scale well because they have search time which is linear in the number of
documents.50

Symmetric searchable encryption was introduced by Song et al. [1], who
presented a scheme that allowed linear search time (in the number of documents)
by the server. Unfortunately their scheme does not achieve a strong notion of
security: it has no security guarantees related to the leakage that can be caused
by the use of the search tokens that are given to the server in order to allow the55

search to be performed on the server side. Goh [2] introduced the approach of
using secure indexes in order to achieve linear search time with stronger security
guarantees. Unfortunately the search time of this approach is inherently linear
in the number of files. Curtmola et al. [3] presented the first secure scheme with
sub-linear search time using an inverted index approach (uses the keywords as60

index) and also introduced a strong security model for searchable encryption
which became the standard security notion for searchable encryption in the
last several years. The inverted index approach is quite efficient and is in fact
optimal for the number of operations that the server has to perform during a
search, which led to it being used in many subsequent works (e.g., [4, 5, 6]). One65

limitation of this method is that it is inherently sequential, preventing it from
taking advantage of parallelism to improve performance. Another issue is that it
is not well-suited for dynamic databases, which is the case of most applications.
Recent works made progress in the direction of dynamic [5, 7, 8, 9, 10] and
parallel [7, 11, 8] schemes.70

Symmetric searchable encryption perfectly fits the scenario of a single user
writing to/reading from the database. However, there is a generic construction
that combines a single writer/reader scheme with broadcast encryption in order
to obtain a scheme that supports multiple readers [3]. One additional issue in
this case is revocation: a revoked user should not be able to perform searches75

after the revocation has occurred.
In terms of query expressiveness, most symmetric searchable encryption

schemes focus on single equality queries. Some recent works [11, 12] demon-
strated that it is possible to extend data structures for single keyword symmet-
ric searchable encryption in order to deal with more complex queries, such as80

conjunctive queries for keyword combinations and general Boolean queries.
Public-key searchable encryption was introduced by Boneh et al. [13]. It

3

allows multiple clients to encrypt data into the database, which can be decrypted
by the data owner that has the secret-key. Other solutions allow conjunctive,
subset and range queries [14]. The efficiency of these schemes is limited by the85

cost of public-key operations. Another problem of the proposed schemes with
strong security assurances is their linear search time, which limits scalability.

So far, to the best of our knowledge, no public cloud offering is known to
support storage protection with searchable encryption support. To explore the
feasibility of searchable encryption for cloud storage, we have chosen to imple-90

ment it using a popular open-source cloud platform. This project is supported
by more than 200 companies around the world, including key industry players.

1.1. Our Contribution

The contribution of this paper is twofold. First, we present a theoretical
analysis of the existing Symmetric Searchable Encryption schemes. In light of95

this analysis, we demonstrate the inefficiencies of the existing schemes while we
expand our analysis by discussing certain privacy issues. Apart from that, we
focus on integrating such a scheme with Openstack – an open-source popular
cloud platform. Finally, based on the findings of our analysis, we have chosen to
implement and test one of the existing schemes, in order to understand whether100

it is practical enough for deployment in real systems. As a result, our theoret-
ical analysis is coupled with extensive experimental results. We hope that the
findings of this work will give valuable insights to protocol designers and will
spawn further research in the area.

1.2. Organization105

In Section 2 we discuss in more detail why searchable encryption fits per-
fectly the cloud. In Section 3 we present in more detail the concept of searchable
encryption and its security model. In Section 4 we survey the current known
methods for building symmetric searchable encryption schemes. Then in Sec-
tion 5 we highlight some considerations regarding the privacy of such schemes110

while in Section 6 we elaborate on their efficiency. Section 7 presents the ar-
chitecture of OpenStack. Then in Section 8 we give our recommendation of the
scheme that seems more appropriate for the integration with OpenStack-based
solutions. Section 9 reports on the performance of the implemented scheme.
Finally, in Section 10 we conclude the paper.115

2. Why Searchable Encryption Squarely Fits the Cloud

While cloud computing has exploded in popularity in recent years thanks to
the potential efficiency and cost savings of outsourcing the management of data
and applications, a number of vulnerabilities that led to various attacks have left
many potential users worried [15]. As a result, experts in the field argued that120

new technologies are needed in order to create trusted cloud services [16, 17] –
services that will eventually eradicate the suspicion of users for cloud computing

4

by providing the necessary security guarantees. More precisely, despite signifi-
cant improvements regarding availability and scalability of cloud services, it has
been observed that the greatest concern of users that hinders the adoption of125

cloud computing is the fear of storing sensitive data online. Without proper
security mechanisms to protect users’ data from unauthorized access, sensitive
information is at risk of being leaked to interested third parties.

The most common solution to this problem is to make sure that users’ data
is always encrypted when it is placed on the provider’s storage hosts and while130

it is in use by the cloud service. However, such an approach does not always
provide full security since all of the trust is placed on the party that is encrypt-
ing the data and storing the encryption key. More precisely, once the cloud
provider is responsible for encrypting the data it becomes aware of the encryp-
tion/decryption key, casting doubts on the security of users’ data in case of a135

malicious provider or a malicious administrator.
One of the most promising concepts first introduced by Song et al. [1] is the

so called searchable encryption where users can search directly on encrypted
data without having to decrypt them first. In general, searchable encryption
schemes aim to provide confidentiality and integrity, while retaining main bene-140

fits of cloud storage – availability, reliability, data sharing, and ensuring require-
ments through cryptographic guarantees rather than administrative controls.
However, until to this day there is a lack of practical applications that rely on
searchable encryption schemes. To the best of our knowledge, there is no public
cloud provider that supports such functionality and the main reason for that is145

the fact that in order to provide a reliable and efficient implementation requires
additional research.

Furthermore, the latest advancements in the field of searchable encryption
have the potential to allow cloud providers to build different kinds of security
levels, which will eventually lead to various business models. Therefore, building150

a concrete searchable encryption scheme for the cloud will give the opportunity
to cloud providers to offer a range of security options for the users. More
precisely, in an ideal scenario users will be able to configure the level of security
based on what kind of searchable encryption they want to use. For example,
options such as the blind storage that were proposed in [9], where users can155

encrypt their data locally before sending them to the cloud and then can search
directly over the encrypted data stored in the cloud provider, will provide a set
of strong security guarantees to the users since they will be sure that even in
the case of a malicious cloud provider or a corrupted administrator the stored
data will be secured since the users will be the only ones who have access to160

the encryption key. In other words, even if the cloud provider tries to expose
the privacy of users by looking at the stored data it will not be able to find
any valuable information as long as the underlying cryptosystem is secure. As
a second example, we can consider a protocol that will be based on proxy re-
encryption that was first introduced in [18] and allows a semi-trusted party to165

search through the data stored in the cloud by using a searchable encryption key.
In contrast to the previous example, such a scenario will weaken the adversarial
model since the users will have to trust a third party – the proxy server – but

5

at the same time will offer better efficiency since all the computations will not
take place on user’s machine but on the proxy. Furthermore, by using searchable170

encryption cloud providers will be able to offer a plethora of options to the users
and will eventually be able to address even the more demanding needs in the
sense of data protection.

In addition to that, cloud services that are solely based on searchable en-
cryption schemes are the perfect candidates for providing a realistic and reliable175

solution for the increasingly urgent problem of physical location of data in cloud
storage. In a short time, the aforementioned problem has evolved from the con-
cern of a few regulated businesses to an important consideration for many cloud
storage users. One of the characteristics of cloud storage is fluid transfer of data
both within and among the data centres of a cloud provider. However, this has180

weakened the guarantees with respect to control over data replicas, protection of
data in transit and physical location of data. Moreover, after the revelations of
E. Snowden some months ago and the NSA scandal the significance for finding a
reliable solution that will tackle this problem is of paramount importance. Even
though, searchable encryption will not provide a direct solution for a trusted185

geolocation-based mechanism [19] for data placement control, it has the poten-
tial to protect users’ private data from unauthorized access by providing the
indispensable proofs ensuring that unencrypted data will only be available in
jurisdictions allowed by policies and defined by the data owner.

Searchable Encryption is not the only technique that allows users to perform190

operations directly on encrypted data. One of the most well-known schemes is
the so called fully homomorphic encryption (FHE) [20] that allows a user to
perform a set of operations directly on ciphertexts. In addition to that, if multi-
party computation (MPC) [21, 22] schemes are combined with FHE schemes
have the potential to provide really secure and privacy-preserving solutions for195

the cloud. However, while both FHE and MPC can perform some computations
on encrypted data they cannot search ciphertexts for specific keywords. Like-
wise, FHE is currently considered as a computationally heavy technique that
prevents any service from using such a scheme. To this end, FHE is currently
on an experimentation stage and cannot be used to run real services. Hence,200

comparing the two techniques would be a rather unfair battle since there is a
huge efficiency gap but most importantly they serve different purposes.

3. General Model of Searchable Encryption

Searchable encryption allows a client to encrypt its data in such a way that
he can generate search tokens that allows the storage server to search over the205

encrypted data. The data can be viewed as a collection f = (f1, . . . , fn) of n files
where file fi is a sequence of words (w1, . . . , wm) from some keyword space W.
Additionally, each file fi has an unique identifier id(fi). The data is dynamic,
thus file additions or removals are allowed. In addition to the search tokens, the
client also generates and sends to the server add/delete tokens when he wants210

to add/delete files from the encrypted database. We formalize the notion of
dynamic symmetric searchable encryption (SSE) scheme using the extensions

6

to the dynamic setting by Kamara et al. [5] of the definition of Curtmola et
al. [3].

Definition 1 (Dynamic Index-based SSE). A dynamic index-based symmet-215

ric searchable encryption scheme is a tuple of nine polynomial algorithms SSE =
(Gen,Enc,SearchToken,AddToken,DeleteToken,Search,Add,Delete,Dec) such that:

• Gen is probabilistic key-generation algorithm that takes as input a security
parameter and outputs a secret key K. It is used by the client to generate
his secret-key.220

• Enc is a probabilistic algorithm that takes as input a secret key K and a
collection of files f and outputs an encrypted index γ and a sequence of
ciphertexts c. It is used by the client to get ciphertexts corresponding to
his files as well as an encrypted index which are then sent to the storage
server.225

• SearchToken is a (possibly probabilistic) algorithm that takes as input a
secret key K and a keyword w and outputs a search token τs(w). It is used
by the client in order to create a search token for some specific keyword.
The token is then sent to the storage server.

• AddToken is a (possibly probabilistic) algorithm that takes as input a secret230

key K and a file f and outputs an add token τa(f) and a ciphertext cf . It
is used by the client in order to create an add token for a new file as well
as the encryption of the file, which are then sent to the storage server.

• DeleteToken is a (possibly probabilistic) algorithm that takes as input a
secret key K and a file f and outputs a delete token τd(f). It is used by235

the client in order to create a delete token for some file which is then sent
to the storage server.

• Search is a deterministic algorithm that takes as input an encrypted index
γ, a sequence of ciphertexts c and a search token τs(w) and outputs a
sequence of file identifiers Iw ⊂ c. This algorithm is used by the storage240

server upon receiving a search token in order to perform the search over the
encrypted data and determine which ciphertexts correspond to the searched
keyword and thus should be sent to the client.

• Add is a deterministic algorithm that takes as input an encrypted index γ,
a sequence of ciphertexts c, an add token τa(f) and a ciphertext cf and245

outputs a new encrypted index γ′ and a new sequence of ciphertexts c′.
This algorithm is used by the storage server upon receiving an add token
in order to update the encrypted index and the ciphertext vector to include
the data corresponding to the new file.

• Delete is a deterministic algorithm that takes as input an encrypted index250

γ, a sequence of ciphertexts c and a delete token τd(f) and outputs a new
encrypted index γ′ and a new sequence of ciphertexts c′. This algorithm

7

is used by the storage server upon receiving a delete token in order to
update the encrypted index and the ciphertext vector to delete the data
corresponding to the deleted file.255

• Dec is a deterministic algorithm that takes as input a secret key K and
a ciphertext c and outputs a file f . It is used by the client to decrypt the
ciphertexts that obtained from the storage server.

A dynamic SSE scheme is correct if for all possible security parameters and
file collections, and for secret keys, encrypted indexes and ciphertexts created260

using the respective algorithms and for any sequences of add, delete and search
operations handled using the respective algorithms. It holds that the search
operation always returns the correct set of indices corresponding to the searched
keyword and the returned ciphertexts can be correctly decrypted. A static SSE
scheme can be defined by omitting the algorithms AddToken,DeleteToken,Add265

and Delete from the definition.
On an intuitive level, a good security notion for searchable encryption would

be to require that nothing is leaked to the storage server beyond the outcome of
the search (also known as access pattern), i.e., the identifiers of the documents
that contain the queried keyword. Note that the access pattern can only be270

hidden using expensive techniques as oblivious RAMs [23, 24]. But the practical
searchable encryption schemes normally leak more than that: they also leak
whether two queries were for the same keyword or not, which is called the
search pattern. The search pattern is leaked for instance if deterministic search
tokens are used, which is the case in the most efficient solutions. Given this,275

a reasonable definition of security for searchable encryption is requiring that
nothing is leaked beyond the access and search patterns. We should mention
that some dynamic SSE schemes also leak information during the add/delete
operations.

This intuitive idea is captured using the extension to the setting of dynamic280

SSE schemes (as in [5]) of the security definition of Curtmola et al. [3], the so-
called security against adaptive chosen-keyword attacks (CKA2). The leakage
functions associated to index creation, search, addition and delete operations
are denoted as LI , LS , LA, LD respectively. Then the security is defined using
the simulation paradigm, which is the standard way of defining strong security285

guarantees in cryptography.

Definition 2 (Dynamic CKA2-Security). Let SSE = (Gen,Enc,SearchToken,
AddToken,DeleteToken,Search,Add,Delete,Dec) be a dynamic index-based sym-
metric searchable encryption scheme and LI , LS, LA, LD be leakage functions.
Then the following experiments are considered:290

• RealA(): The secret key K is generated by running Gen(1). The adversary
A chooses a file collection f and then receives an encrypted index γ and
the ciphertexts c such that (γ, c)Enc(K, f). The adversary A can make
a polynomial number of adaptive queries to get search, add and delete
tokens. The tokens are generated using the respective algorithms of SSE295

8

(the ciphertext is also generated in the case of an addition) and given to
the adversary. Finally A outputs a bit b indicating whether he thinks he
is the real or ideal experiment.

• IdealA,S(): The adversary A chooses a file collection f . The simulator S
only gets LI(f) and has to simulate an encrypted index γ and ciphertexts300

c to send to the adversary. The adversary A is again allowed to make
adaptive queries to get search, add and delete tokens; but the simulator has
to generate the tokens (and also the ciphertext in the case of additions) to
sent to the adversary given only the leakage from either LS, LA or LD.
Finally A outputs a bit b indicating whether he thinks he is the real or305

ideal experiment.

SSE is (LI , LS, LA, LD)-secure against adaptive dynamic chosen-keyword
attacks if for all probabilistic polynomial time adversaries A, there exists a proba-
bilistic polynomial time simulator S such that |RealA() = 1− IdealA,S() = 1| ≤
negl().310

The intuition behind this definition is that if every adversary cannot distin-
guish whether the encrypted index, ciphertexts and tokens given to him were
generated using the real data and the scheme SSE or by a simulator which only
gets as input the information specified by the leakage functions, then SSE only
leaks the information specified by the leakage functions.315

Using this security definition the leakage of the scheme SSE can be formally
defined. As dynamic index-based symmetric searchable encryption schemes
should leak as little information as possible, a good example would be: LI

leaking only the number of files and unique keywords, the identifiers of the files
and the size of the files, LS leaking only the search and access patterns, LA leak-320

ing only the size and identifier of the added file as well as the updated number of
unique keywords and LD leaking only the updated number of unique keywords.

4. Existing Approaches

4.1. Two-Layered Encryption Scheme

The first construction of SSE was presented by Song et al. [1], who developed325

a solution based on a special two-layered encryption scheme. The idea is to
encrypt each keyword separately using a deterministic encryption scheme in the
first layer and then use a stream cipher with a special structure for the second
layer of the encryption. The keystream for the second level is generate in a
special way which allows the detection of the keywords during an execution of330

the search algorithm. More specifically, for a keyword w, in the first layer a
deterministic encryption x = E(w) of w is computed and then parsed in two
parts x = x`‖xr. The first part x` is then used to generate a key k for a hash
function h. Finally the keystream is chosen by picking a random seed s, which
is xored with x`, and then computing h(k, s), that is xored with xr. In order335

to perform a search for the keyword w the search token τs(w) is x = E(w)

9

and the key k generated from x`. With this token the server can perform the
search by testing for each ciphertext c whether cx has the format s‖h(k, s)
for some s or not. Unfortunately this schemes has some problems: first, the
scheme uses fix-sized keywords and is not compatible with existing encryption340

standards; second, it does not achieve a strong notion of security – it has no
security guarantees related to search capabilities of the scheme, the only security
guarantees is about the ciphertext themselves (which are IND-CPA secure).
Indeed the scheme leaks the position of the keyword within the document, which
can lead to attacks based on statistical analysis; finally, the search time is linear345

in the total number of words contained in the documents.

4.2. (Forward) Index Approach

The first approach for designing SSE schemes with stronger security guar-
antees and linear search time in the number of documents was the (forward)
index approach introduced by Goh [2]. In such approach, for each document,350

there is an associated encrypted data structure that is used for searching the
keywords. The index is independent of the underlying encryption algorithm.
A user that possess the secret key can generate a search token for a specific
keyword, which allows the server to search for the files containing that keyword
using the index. Goh’s scheme [2] uses Bloom filters [25] to build the index.355

Bloom filters are a data structure that can be used to answer set membership
queries. It uses an array of ` bits which are initially 0. For each element w to be
added into the set, t independent hashes of w are computed, where each hash
function hi hashes into the set {1, . . . , `}, and then the bits hi(w) are set to 1.
Using this data structure, it is possible to check whether the keyword is present360

in a document or not by checking whether all the bits outputted by hi(w) are
set to 1 or not. But this method inherently produces false positives. To avoid
leaking information about the keywords, Goh’s scheme first process the keyword
using two pseudorandom functions before inserting them in the Bloom filters
(the second function also takes as input an unique document identifier in order365

to avoid leaking similarities between the documents). One problem with this
approach is that the number of 1 s in the Bloom filter leaks information about
the number of keywords associated with that document.

Chang and Mitzenmacher [26] developed a solution without false positives.
The idea is to use a prebuilt dictionary of keywords to build an index per docu-370

ment. It is represented as an array with ` bits, where ` is the number of distinct
keywords and each bit represents a keyword. A pseudorandom permutation is
used to hide which keyword corresponds to each bit.

The main drawback of the forward index approach is that its search time is
inherently linear in the number of files since the search is performed by using the375

encrypted data structure that is associated with each specific file. Additionally,
the security notions used on the works mentioned above do not guarantee the
security of the search tokens.

10

4.3. Inverted Index Approach

The central idea of the inverted index approach is to use an index per distinct380

keyword instead of per distinct document. This change reduces the search time
from linear in the number of documents to linear in the number of documents
that contain the searched keyword, which is optimal. The first schemes using
this approach were presented by Curtmola et al. [3].

The idea of the scheme is that for each keyword w there is a linked list Lw385

which contains the identifiers of the documents that contain the keyword w.
But these linked lists cannot be store in a straight-forward and unencrypted
way, since this would leak information. The idea is that the nodes of all linked
lists are stored together in an array A, in a scrambled order and in an encrypted
format. The plaintext of each node consists of three parts: the identifier of one390

document, the key used to encrypt the next node of the linked list and the
pointer to the next node of the linked list. What is then needed in order to
perform the search for keyword w is the key used to encrypt the first node of
Lw and a pointer to its location within A. This information is stored encrypted
in a pseudorandom position of a look-up table T . The search token τs(w) then395

consists of the position in T used for keyword w together with the key that was
used to encrypt this entry of T . This scheme achieves security according to the
strong security notion of Curtmola et al. [3] against non-adaptive adversaries,
i.e., the adversary has to choose the values it will query at onset before seeing
any other information.400

In order to obtain security against adaptive adversaries, Curtmola et al. [3]
also proposed a second scheme, with increased communication and storage com-
plexities. The idea is to use a look-up table T directly, but with extended labels.
For a keyword w appearing in n documents, the extended labels are w‖1, . . . w‖n
and for each of them there is an associated pseudorandom entry of T containing405

the identifier of one of the documents in which w appears. The keyword wMAX

that appears more often on distinct documents has to be determined and in also
how many documents MAX it appears. The search token for w consists of the
outputs of permutation that scrambles T applied on the inputs w‖1, . . . w‖MAX.
The scheme pads the table with dummy entries so that the identifier of each410

document appears in the same number of entries. The search in this scheme is
linear in the maximum number of documents that contain a single keyword, i.e.
MAX.

Chase and Kamara [4] proposed structured encryption, which is a general-
ization of index-based SSE schemes. They also noticed that the simpler scheme415

of Curtmola et al. [3] (i.e., the one that is only secure against non-adaptive
adversaries) can be also be made secure against adaptive adversaries by requir-
ing the symmetric encryption scheme that is used to encrypt the nodes to be
non-committing.

Kurosawa and Ohtaki [6] showed that it is possible to extend the second420

SSE scheme of Curtmola et al. [3] (i.e., the one that is secure against adaptive
adversaries and has linear search time) in order to achieve a stronger notion of
security (UC security [27]) that guarantees security against active adversaries

11

(instead of only against passive ones, as considered in the other works). The
idea is to extend the scheme by using message authentication codes in order to425

make it a verifiable SSE scheme. The biggest limitation of the resulting scheme
is its linear search time.

One big limitation of the above schemes is that they are not explicitly dy-
namic. The arrays would need to be updated when a file addition/deletion is
performed, and using general techniques for making it dynamic would result in430

an inefficient final scheme. Another significant limitation is that they are not
parallelizable since the encrypted indexes used in these schemes store data at
random positions and the location of the next position to be accessed is only
learned when the data in the current one is retrieved.

4.3.1. Achieving Dynamicity Using a Deletion Array435

One idea to obtain a dynamic SSE is to use a deletion array [5]. Using the
simpler scheme of Curtmola et al. [3] (which is secure against non-adaptive) as a
starting point, Kamara et al. [5] were able to perform modifications in order to
obtain the first secure dynamic SSE scheme1, which is proven secure in the ran-
dom oracle model. The two limitations of the original scheme are that it is only440

secure against non-adaptive adversaries and that it is not explicitly dynamic.
The first limitation can be overcome by using a non-committing symmetric en-
cryption scheme as mentioned above, but the second one is more difficult to
overcome.

The problem is that when a file is added/deleted, the nodes in the search445

array A have to be updated. More specifically, when a file f is deleted, the
nodes in A corresponding to f should be cleared. When a file f is added, it
is necessary to locate free locations in A to add the nodes corresponding to f .
Additionally, when a file is added or deleted, some pointers in the linked list have
to be updated (but they are encrypted). To deal with this, Kamara et al. [5]450

use the following techniques: (1) a deletion array keeps track of the search array
positions that need to be modified if a file deletion occurs. This deletion array
can be queried given a token that is generated by the client. (2) There is a list
of free nodes which keeps tracks of the free positions in the search array A and
can be used by the server when a file is added. (3) The pointers are encrypted455

using a homomorphic encryption scheme in order to allow modifications without
decrypting. Specifically, the encryption is done by XORing the message with
the output of a PRF (note that this construction is also non-committing).

In the proof of security against adaptive adversaries of static SSE schemes,
the queried keywords can be chosen based on the encrypted index and the results460

of the previous queries, and this requires the simulator to create an encrypted
index which is equivocable, i.e., the simulator creates a “fake” encrypted index.
Later, when a keyword is queried for the first time, the simulator can generate

1van Liesdonk et al. [28] designed an explicitly dynamic SSE scheme. However, they only
presented a formal security proof for the case of static file collections. Additionally, the
encrypted index in their scheme is relatively large.

12

an appropriate search token τs(w). This level of equivocation was achieved by
simply using non-committing encryption schemes [3, 4]. However, in the case of465

dynamic SSE schemes, a higher level of equivocation is required. The adversary
can initially query a keyword w in order to commit the simulator to a search
token τs(w), then add a file f that contains w (the simulator does not know
about this fact, and thus cannot modify the encrypted index in a meaningful
way) and finally query w again, at which point the simulator is already commit-470

ted to the search token τs(w) but was unable to update the encrypted index to
reflect the changes. To address this, Kamara et al. [5] designed the scheme so
that the adversary needs to query a random oracle during the search algorithm
execution. The random oracle then provides the required level of equivocation
for the simulator.475

The main problem with this scheme is that the leakage function associated
with the addition/deletion of files leaks too much information, namely the search
tokens corresponding to the keywords contained in the added/deleted file. In
the important case in which the database is initially empty and the files are
incrementally added by the client, this scheme is no more secure than using a480

deterministic encryption scheme.

4.3.2. Achieving Dynamicity by Learning the Inverted Index On-the-Fly

Another idea to obtain dynamic SSE schemes is to build the inverted index
on-the-fly, as proposed by Hahn and Kerschbaum [10]. It is based on the idea
of learning the inverted index for efficient access from the access pattern itself.485

With this approach, one starts with a forward index based searchable encryp-
tion scheme (using the files as index) that requires linear scans and an empty
inverted index. When a keyword is searched for the first time, its access pattern
and deterministic search token (for the inverted index) are learned. Next, the
keyword is incorporated into the inverted index. When new searches are done490

for the same keyword, the inverted index is used to search in sub-linear time.
Additionally, if an added/deleted file contains a keyword which is already in the
inverted index, then the entry corresponding to that keyword in the inverted
index is updated.

The central observation used in this approach is that the search tokens of the495

known SSE constructions remain valid for future usage (until the entire system
is rekeyed). Hence, if a keyword was already searched and its search token
learned by the server, then updating the inverted index entry corresponding to
that keyword can be done without leaking additional information to the server
(the server could already use the old search token to test if the added/deleted500

files contained that keyword anyway).
Using this approach it is possible to obtain a scheme which has asymptot-

ically optimal amortized search time (if the number of search queries is large
enough) and small index size, and for which it is proved in the random ora-
cle model that the updates leak no more information than the access pattern505

(i.e., no more than what can be inferred from the search tokens). The obtained
scheme can either have no storage on the client side other than the keys, or
store the search history in the client in order to improve the performance of the

13

update procedure. The main drawback of this approach is that the time for the
first search of a keyword is linear.510

4.4. Keyword Red-Black Tree

Given the inherently sequential nature of the inverted index approach and
the fact that the dynamic SSE schemes based on that approach are very complex
and difficult to implement, Kamara and Papamanthou [7] developed an alterna-
tive method for obtaining SSE schemes, which also enjoys sub-linear search time515

but is highly parallelizable and easily handles dynamic file collections. It uses
a structure similar to red-black trees and so was named as keyword red-black
tree. The keyword red-black tree is then encrypted using pseudorandom func-
tions and permutations and a random oracle. The final scheme has the same
asymptotic efficiency as an unencrypted keyword red-black tree.520

The keyword red-black tree is binary tree-based multi-map data structure.
It is assumed that the universe of keywords is fixed (m in total) and much
smaller than the number of files, which can grow dynamically. Additionally,
a total order on the documents f = (f1, . . . , fn) is imposed by the ordering of
the identifiers. At the leaves of tree, pointers to the appropriate documents are525

stored. At each internal node u of the tree, a m-bit vector du = du,1 . . . du,m is
stored, in which du,i corresponds to the i-th keyword wi of the universe. The
bit du,i is set to 1 if, and only if, one of the files associated with u’s children
contains the keyword wi. This can be efficiently computed by starting at the
leaves, and then for the internal nodes computing du as the bitwise OR of the530

values of its two children. To search for a keyword wi, simply start at the root
and continue recursively until either a node is achieved in which du,i = 0 (no file
associated with the children nodes contain wi) or a leaf is achieved for which the
associated file contains wi. One reason why this data structure is useful is that
it supports both keyword-based operations (following the paths from the root535

to the leaves), which are used for searching, and file-based operations (following
paths from the leaves to the root), which are used to handle updates. Another
useful property is that the search in each children can continue using a different
processor. The idea for encrypting the data structure is as follows: for each
keyword wi there is a distinct key that is used to encrypt the bits du,i (for all540

u). The encrypted bit du,i is then stored at one of two hash tables associated
with node u, at a pseudorandom position. Whether it is stored in the first or
second hash table depends on the output of a random oracle. The other table
will contain a random value in the respective position. In order to perform an
update, the server performs a structure update on the keyword red-black tree,545

which involves the necessary rotations that are performed during an update of a
red-black tree (in order to maintain a a logarithmic height). Note that only the
file identifier is required for performing this operation. The server then sends to
the client the part of the tree that needs to be updated, and the clients answers
with a token that allows the server to update the values at those positions.550

Using these building blocks, the scheme was proved to be secure in the
random oracle model. The updates do not leak any information apart from
what can be inferred from the previous search tokens (in contrast with the

14

scheme by Kamara et al. [5] for instance) and can be efficiently performed since
all information about a file f can be found and updated in O(log |f |) time,555

but require one and a half rounds of interaction. The total search time is
almost optimal (loose by a factor O(log |f |)), but it is easily parallelizable, and
if ω(log |f |) processors are used, its clock search time is smaller than the optimal
sequential search time. If a large enough number of processors is available, the
resulting clock search time is of O(log |f |). One drawback of this scheme is that560

the data structure has size O(m · |f |) and the constants are quite high.

4.5. Dictionary Entry per Combination of File and Keyword

As large databases are the main motivation for outsourcing storage, Cash
et al. [8] proposed a (dynamic) SSE scheme based on a new approach that
was designed with scalability to very-large databases (in the order of billions565

of file/keyword pairs) in mind. The new approach for designing (dynamic)
SSE schemes is based on the idea of storing each occurring combination (file f ,
keyword w) as an entry in a generic dictionary data structure. Their scheme
associates a pseudorandom label with each file/keyword pair, and then stores
the encrypted file identifier with that label in a generic dictionary data structure.570

The labels are computed in such a way that the client, given a keyword w to be
searched, can compute a short, keyword-specific key Kw that allows the server
to perform the search by first recovering the necessary labels, then retrieving
the encrypted file identifiers from the dictionary and decrypting them. This is
done by using a pseudorandom function with the key Kw to create the labels575

and then applying it to a counter in order to generate the labels for each (file
f , keyword w) pair. The search in this scheme is fully parallelizable, which is a
key parameter for allowing the scalability of SSE schemes.

To allow additions to the database, the clients need to be able to compute the
labels for the added data. This in turn requires either the storage of counters by580

the client or communication that is proportional to the total number of keywords
ever added or deleted. Deletions are handled via a pseudorandom revocation
list kept by the server and used by the server to filter out the results. Space can
only be reclaimed via periodical re-encryption of the complete database.

SSE schemes often store data at random locations, thus resulting in a lack of585

locality, which impacts the I/O performance. Hence, to achieve high scalability
– scaling for databases containing billions of file/keyword pairs – modifications
to improve the I/O performance are needed, on top of providing a basic scheme
using a dictionary.

Databases typically contain a large variability in the number of matches590

for different keywords. Searchable encryption schemes need to consider this, in
order to improve scalability. One technique used to reduce the number of dictio-
nary retrievals is packing the related results together. We differentiate between
keywords with small, medium and large sets of associated files. For small sets,
the file identifiers are stored directly (in a packed form) in the dictionary. For595

medium sets, blocks of pointers are stored in the dictionary and they point to
blocks of file identifiers that are stored in random positions of an array. For large
sets, there are two levels of indirection: the dictionary stores block of pointers

15

that point to block of pointers (stored in the array) that point to blocks of file
identifiers.600

This scheme [8] is secure against non-adaptive adversaries in the standard
model and against adaptive adversaries in the random oracle model, has minimal
leakage, optimal server index size (i.e., its size is of the order of the number of
file/keyword pairs), optimal search time (i.e., of the order of the number of files
matching the keyword) and allows fully parallel searching. One disadvantage of605

this scheme is that either expensive communication, or storage in the client side
(to keep track of counters used in the updates) is required. Another disadvantage
is that additional storage (linear in the number of deletes) is required on the
server side in order to store the revocation list and the space corresponding to
the delete items can only be reclaimed if the complete database is re-encrypted.610

Hence this scheme is suitable only for applications where deletions are relatively
rare.

4.6. Hierarchical Structure of Logarithmic Levels

Stefanov et al. [29] proposed a dynamic SSE scheme that uses a hierarchical
structure of logarithmic levels (which is reminiscent from techniques for oblivious615

RAMs). For P pairs of file/keywords, the server stores a hierarchical data
structure containing logP + 1 levels. Each level ` can store up to 2` entries,
where each entry encrypts the information about one keyword k, one identifier
of a file f that contains w, the type of operation performed (either add or delete)
and a counter for the number of occurrences of keyword w in the level `. The620

scheme ensures that within the same level only one operation is stored for each
pair of file/keyword. One search token per level of the structure is used to
perform the search operation. In this scheme, every update induces a rebuild
of levels in the data structure. The basic idea is to take the new entry together
with the entries in consecutive full levels 1, . . . , `− 1 and merge them at level `.625

This scheme has small leakage, a data structure of linear size (in the number
of file/keyword pairs), and both updates and searches are in sub-linear time. In
contrast to the other schemes, it achieves the notion of forward security: the
search tokens used in the past cannot be used to search for the keyword in the
documents that are added afterwards. It is achieved due to the fact that every630

time a level is rebuilt a new key is used to encrypt the entries within that level.
However, this smaller leakage comes at the expense of poly-logarithmic overhead
(in the number of file/keyword pairs) on top of Dynamic SSE overhead of other
schemes.

4.7. Blind Storage635

Naveed et al. [9] introduced a basic primitive called blind storage, which
allows the client to store a collection of files on the server in such a way that
all the information about them is kept secret from the server until they are
accessed, including the number of stored files and the lengths of each file. When
a file is accessed, the server learns about its existence and size, but not its name640

or contents. The server can also notice if the same file is accessed multiple times.

16

They build a blind storage scheme by storing each file as a collection of blocks
kept in pseudorandom locations. There is an upper bound N on the number
of data blocks that can be stored. Given a file f with n blocks, αn locations
of the set {1, . . . , N} are chosen using a pseudorandom number generation and645

the n blocks of f are stored in n of these positions. The reason to choose α
as many blocks as necessary to store f is that there may be collisions with the
storage positions of other files. Hence the αn positions that are retrieved from
the server to access f are chosen completely independently from the other files
(and so this does not leak any information to the server) and then f is stored650

encrypted in n of these positions. One issue is that the client needs to know
the number of blocks in f to retrieve it. This can be achieve by either storing
these information on the client (which is practical if the data collection consists
of a small number of relatively large files), or by storing this information in the
first block and adding one additional round of interaction, in which the client655

retrieves the κ first blocks of f . This construction also supports dynamic blind
storage, but the updates leak the size of the files. For a typical scenario one can
have a blowup factor α = 4.

The idea to obtain an SSE scheme from this blind storage scheme is to store,
for all keywords, the search index entries (which lists all the files containing the660

keyword) as individual files in the blind storage scheme. For dynamic SSE
schemes, the original files and the added files are treated differently by their
scheme, which uses two different indexes. The index corresponding to the origi-
nal files is done using the blind storage scheme and lazy deletion (i.e., after the
deletion of one of the original files, the index file of a keyword is not updated665

before the first search is done for that keyword). The index corresponding to
the added files is done using a much simpler scheme which supports efficient
updates.

One advantage of this scheme is that the server does not need to perform
any computation, but only to provide interfaces for uploading and downloading670

files, which makes the scheme much more transparent for using in cloud envi-
ronments. Additionally, its proof of security is in the standard model, which is
a consequence of the fact that the server does not carry out any decryption. A
significant disadvantage however is that it does not provide the same level of
security for original and added files. The updates leak a deterministic function675

of the keywords and so the security guarantees for the added files are much
weaker than for the original files. This is particularly worrisome for databases
that start (almost) empty and grows over the time – which is often the case in
practice.

4.8. Extensions to More Complex Queries and Models680

The methodologies described above focused on the case of single-keyword
searches. Cash et al. [11] showed how to extend the data structures of SSE
schemes that allow single-keyword searches in order to permit more expressive
queries such as conjunctive search and general Boolean queries (via the OXT
protocol of [11]). The information stored in these data structures is expanded685

from simple document identifiers to also include protocol-specific values (of the

17

OXT protocol). The central idea of the OXT protocol is to start the search with
the least frequent keyword using the basic search scheme of the single-keyword
SSE scheme and then use the specific values of the OXT protocol in order to
filter out the documents that do not match the remaining keywords. In order690

to do that the protocol uses a pre-computed two-party protocol based on the
decisional Diffie-Hellman assumption about discrete-log related hard computa-
tional problems. Using this methodology it is possible to allow more expressive
queries while maintaining the search performance. However, the price to pay is
the larger leakage profile.695

Jarecki et al. [12] similarly showed how to extend those data structures in
order to allow more complex multi-client SSE settings. In these settings, the
client doing the searches is not necessarily the data owner, but only gets search
tokens from the data owner in order to perform the authorized queries that
he wants. The authors present solutions for both the case in which the data700

owner can and cannot learn the searched terms. Their solution is essentially an
extension of the OXT protocol.

5. Privacy Issues

There are obviously trade-offs that have to be done for searchable encryption
to achieve functionality. This is captured in the security proof of the schemes by705

the leakage function. A desirable leakage profile for a SSE scheme would be to
leak only the outcome of the search (i.e., the identifiers of the documents that
contain the queried keyword), which is known as the access pattern, as trying
to hide this information requires the use of expensive techniques. However,
normally one has to make a bigger compromise: the current efficient approaches710

use deterministic search tokens, which leads to the leakage of the search pattern
(i.e., whether two queries are for the same keyword or not). In addition to
access and search patterns, many schemes also leak some general information,
such as number of files, number of keywords, number of file/keyword pairs, etc.
However, this kind of information is a reasonably acceptable form of leakage.715

The main problem with leakage occurs in dynamic SSE schemes since many
schemes leak additional information during the add/delete operations. One
dangerous form of such leakage is leaking the search tokens corresponding to the
keywords contained in the added/deleted file (even for the keywords that were
not searched in past) [5]. This renders the scheme inappropriate for databases720

in which most of the data is added incrementally (the scheme would be no more
secure than using a deterministic encryption scheme if the database is initially
empty and the files are incrementally added by the client). Obviously, if the
deterministic search tokens are still valid in the future (which is the case in all
current schemes except [29]), then the server can test them against the added725

files in order to learn if the added file contains the keywords that were searched
in the past; we are not aware of a solution to this issue.

Extending an SSE scheme that allows single-keyword searches in order to
allow more complex queries [11] also implies an extended leakage function. In
this case, it is not completely clear how dangerous this additional leakage can730

18

be for the users. In the specific case of the OXT protocol [11], care should be
taken to always use the least frequent keyword as the first keyword in the query,
so that the additional leakage due to the OTX protocol is as limited as possible.

6. Efficiency

In terms of efficiency, one essential parameter is the search time complexity:735

schemes which have a search time which is linear in the number of documents are
impractical in most scenarios. Therefore, it is essential to have sub-linear search
time, and ideally optimal search time (i.e., search time which is proportional to
the number of documents that contain the queried keyword). Schemes which
have an asymptotically optimal search time, but have a linear search time for the740

first search of a keyword (such as [10]) are not useful in all practical scenarios.
Having a poly-logarithmic (in the number of files) overhead over the optimal
search time [7, 29] can also be problematic in the case of databases with large
number of small files.

Another important parameter is the possibility to parallel the search. Schemes745

supporting this feature (e.g., [7, 8]) are particularly amenable for usage in a
cloud environment. Additionally, the scheme should ideally be designed so that
it maximizes the I/O performance [8] by improving the locality of the data
structures used for searching.

Another main parameter is the size of the data structures that need to be750

stored by the server (and possibly by the client). Ideally, the data structure
kept by the server should have optimal size (i.e., size of the order of the number
of file/keyword pairs). The need for additional storage (linear in the number of
deletes) in order to store a revocation list (e.g., [8]) can be troublesome in the
case of highly dynamic file collections. Not recovering the space corresponding755

to the delete items until the database is completely re-encrypted [8] can limit the
applicability to scenarios where deletions are quite infrequent. Storing a small
amount of information on the client side (such as one counter per keyword [8]
or the search history [10]) in order to improve the performance can be a good
solution in some scenarios, but is not universally applicable. Additionally, the760

number of rounds of interaction between the client and the server should be
kept as small as possible in order to minimize network delay.

Despite the clear advantages of SE, there are certain drawbacks that pre-
vents cloud service providers from adopting such techniques and keep them from
becoming mainstream. More precisely, as described in [30] searching the stored765

documents takes linear time in the size of the database, and/or uses heavy arith-
metic operations. Furthermore, the existing schemes do not consider adaptive
attackers; a search-query will reveal information even about documents stored in
the future. If they do consider this, it is at a significant cost to the performance
of updates. Apart from that, SE schemes allow for Boolean searches but have770

not shown how to efficiently support phrase searching. Sub-word matching,
exact matches, regular expressions, natural language searches and proximity-
based queries are all functionalities that modern search engines employ and

19

users expect to have. However, such functionality is absent from current SE
approaches.775

7. Openstack

OpenStack is an open-source cloud computing software platform that was
first released in 2010 and currently developed under the guidance of the Open-
Stack Foundation, a non-profit corporation entity. This project is supported
by more than 200 companies around the world, including key industry players.780

One important criterium for the success of such attempt is the ability of intro-
ducing search capacities for the encrypted data with minimal modification on
the server side, in order to facilitate its adoption by the OpenStack community.
Currently, OpenStack only has native support for protection of data at rest,
which allows limited actions for volume encryption, ephemeral disk encryption785

and object storage encryption.
Implementation of a searchable encryption scheme for the OpenStack Database

components would significantly boost the security of OpenStack cloud deploy-
ments. A first use case for implementing searchable encryption in OpenStack is
encrypted access to OpenStack service configuration data.790

7.1. Architectural Overview

OpenStack is a free and open source cloud management platform, which
allows to set up, operate and maintain large-scale cloud computing deployments.
It is one of the largest open source cloud management platforms, supported by
more than 500 companies2. Since its first release in 2010, OpenStack has had a795

rapid community-driven evolution and is currently at its eighth release.
On a higher level, OpenStack is a collection of independent components

that communicate with each other through public APIs and collectively form a
robust cloud computing platform. Some of the core OpenStack services are the
dashboard which serves as a graphical user interface for the compute component,800

the image store and a object store. The three latter components authenticate
through an authentication component.

The current release of OpenStack (“Newton”) comprises five components
which correspond to the above logical structure:

• OpenStack Compute (code-name Nova) is a core component of OpenStack805

and focuses on providing on-demand virtual servers. Nova offers several
services, spawned on different nodes in an OpenStack deployment depend-
ing on the purpose of the node. The services are nova-api, nova-compute,
nova-volume, nova-network and nova-schedule. Additional services, which
are not part of Nova but are however used by it are a queue service (cur-810

rently RabbitMQ is used, however any other queue system can be used
instead) as well as a SQL database connection service (MySQL and Post-
greSQL are supported for production, sqlite3 for testing purposes).

2List of supporting organization: http://www.openstack.org/foundation/companies/

20

http://www.openstack.org/foundation/companies/

• OpenStack Networking (code-name Neutron) is a core project implement-
ing support for a range of networking models that fulfill the needs of815

various applications and user groups. While basic models include flat net-
works with VLANs for tenant isolation, Neutron can be extended to take
advantage of the Software-Defined Networking model and create massively
scalable multi-tenant virtualized networks. The extension framework also
allows to deploy and manage software implementations of additional net-820

work services, e.g. load balancing, firewalls, virtual private networks, etc.

• OpenStack Dashboard (code-name Horizon) is a Django-based dashboard
which serves as a user and administrator interface to OpenStack. The
dashboad is deployed through mod wsgi in Apache and is separated into
a reusable python component and a presentation layer. Keystone also825

uses an easily replaceable data store which keeps information from other
OpenStack components.

• OpenStack Image Service (code-name Glance) is VM image repository that
stores and versions the images that are made available to the users initially
or modified through subsequent runtime updates.830

• OpenStack Object Storage (code-name Swift) is an object store with a
distributed architecture which aims to avoid single points of failure and
facilitate horizontal scalability. It is limited to the storage and retrieval
of files and does not support mounting directories as in the case of a
fileserver.835

• OpenStack Identity (code-name Keystone) is a unified point of integration
for the OpenStack policy, token and catalog authentication. Keystone has
a pluggable architecture to support multiple integrations, and currently
LDAP, SQL and Key-Value Store backends are supported.

• OpenStack Block Storage (code-name Cinder) manages the creation and840

operation of block devices on servers, enabling tenants to fulfil their stor-
age requirements. The block storage system is appropriate for performance-
sensitive scenarios (e.g. database storage, expandable file systems, access
to raw block-level storage, etc.). Besides the native block storage imple-
mentation, the OpenStack Block Storage currently provides support for845

other storage platforms.

• OpenStack Telemetry (code-name Ceilometer) service aggregates usage
and performance data across OpenStack services and provides support
for billing and a global resource utilization map. This is necessary as
service provides often require to collect accurate information about the850

utilization of computing, storage and networking resources within a cer-
tain infrastructure cloud deployment.

• OpenStack Orchestration (code-name Heat) In order to support scalable,
large-scale cluster deployment, OpenStack uses a template-based orches-
tration engine which allows automated deployment of infrastructure. The855

21

orchestration engine is used both for pre- and post-deployment actions
and configuration changes, as well as for auto-scaling of key infrastructure
elements based on the information provided by the telemetry service.

• OpenStack Database (code-name Trove) service provides a native Open-
Stack relational database which can be used for infrastructure manage-860

ment tasks, such as a deployment, patching, backing up, restoring and
monitoring infrastructure components.

• OpenStack Bare-Metal Provisioning (code-name Ironic) service aims to
provision bare metal (i.e. non-virtualized) computing resources similar to
the current application of PXE and IPMI protocols.865

All of the above described components interact through a set of REST appli-
cation programming interfaces (APIs) and form the fabric of a cloud computing
infrastructure deployment.

The OpenStack documentation 3 describes in details each of the above named
components and their interaction.870

7.2. Storage Protection Mechanims

There are currently several mechanisms for protection of data in OpenStack,
both for data at rest and data in transit. While data in transit can be pro-
tected using common mechanism such as TLS and IPSec, we instead focus on
the storage protection mechanisms found in OpenStack. When it comes to875

confidentiality of data at rest, the available functionality is limited to basic
symmetric encryption capabilities. Thus, OpenStack tenants have the following
complementary options: volume (i.e. block storage) encryption, ephemeral disk
encryption and object storage encryption.

The volume encryption functionality in OpenStack supports per-tennant cre-880

ation and usage of encrypted volumes, as well as encrypted backups and is
exposed to a key management service. Some proposed approaches for volume
encryption allow to transparently mount volumes to guest virtual machines with
the encryption and decryption being handled by the disk encryption subsystem
of the cloud host. However, this functionality is not currently integrated in the885

official OpenStack release.
The ephemeral disk encryption feature allows encryption of the temporary

work space used by each individual virtual host operating system. This prevents
plain-text residual information from earlier tenants to be left on the physical
disks of the cloud hosts.890

Finally, object storage encryption is currently limited to disk-level encryption
per node. The encryption functionality for the Swift object storage is currently
under development.

3OpenStack Documentation Page http://docs.openstack.org

22

http://docs.openstack.org

7.3. Searchable Encryption in OpenStack

Searchable encryption has the potential to considerable expand the use of895

encryption of data at rest within OpenStack and directly contribute to the pro-
liferation of security-hardened OpenStack deployments. Furthermore, a contri-
bution to the implementation of a searchable encryption scheme for the block
storage in OpenStack would be welcomed by the OpenStack community and
give significant visibility among the users and contributors of the project.900

A feasible target for implementing searchable encryption functionality is the
OpenStack configuration database (code-name Trove). The database contains
sensitive configuration data and is accessed for operational purposes by various
components of the OpenStack deployment. Disclosure of such sensitive config-
uration information can lead to a complete and irreversible compromise of the905

cloud deployment. Implementing searchable encryption functionality for the
configuration database would allow the system components to identify and re-
trieve encrypted entries in the configuration database without having to decrypt
the entire set of stored data. This would help protect the confidentiality of the
data with a minimal communication overhead.910

8. Recommendation for Implementation

In the light of the issues discussed in the previous sections it is obvious that
some kind of compromise has to be done as none of the state of art search-
able encryption schemes achieves all the ideal attributes. Sub-linear time and
support for dynamic databases are with great probability the most important915

points and therefore they should be supported by the scheme chosen to be in-
tegrated with OpenStack. Another important facet, as pointed out earlier, is
the ability to add support for search over encrypted data while changing the
server side as less as possible (in order to minimize the resistance against its
adoption from the side of the OpenStack community). Taking these parameters920

into account, the scheme of Naveed et al. [9] stands out as the most appropriate
for integration with OpenStack-based platforms as it views the cloud simply
as a storage service, has optimal search time and supports dynamic databases.
One additional advantage of this scheme is that it has a security proof in the
standard security model, as opposed to most schemes which were only proven925

to be secure in the heuristic random oracle model. The disadvantage of the
scheme is that the level of security for the added files is smaller than for the
original files. However, we considered that this is the best trade-off possible
given the current state of affairs in the field of searchable encryption. Therefore
our choice was to implement the scheme of Naveed et al. [9] in order to check930

its performance for real applications and the possibility of integrating it with
OpenStack.

9. Experimental Results

For the needs of the paper, we implemented the Searchable Encryption
Scheme on top of a Blind Storage System as proposed by [9]. In order to be935

23

GNU Toolchain (GCC compiler) 5.2.1
Boost 1.58.0
Crypto++ 5.6.1
Curl++ 0.7.3
Curl 7.43.0

(a) Build environment, libraries and versions

α (expansion factor) 4
κ (minimal number of blocks per file) 80
block size (bytes) 4096
total block number 218

(b) Runtime parameters

CPU AMD A10-7850K Radeon R7
RAM 16 GB
OS Ubuntu Desktop 15.10

(c) Client environment

CPU Virtual CPU with 1 core (see client)
RAM 2 GB
OS Debian 8 (Jessie)

(d) Server environment (actually not used)

Table 1: Experimental setup

comparable with their findings our implementation was built with the same tool
chain and uses the same third party libraries as far as known. This is to say, the
application is written in ISO C++ 2011 and uses the Boost [31], Crypto++ [32]
and CurlPP [33, 34] libraries.

We used the CurlPP is a multi-protocol network library for all network IO.940

We used the Crypto++ library for all cryptographic primitives. The Boost li-
brary was used for two different aspects: to abstract from OS-dependent parts
such as runtime configuration and user interaction. This part does not con-
tribute to the performance measurement, because any interaction “with the
outside world” (like reading runtime parameters and user input) only occurs945

during the start-up phase of the program and not during the actual processing
phase. Moreover, the Boost library is used to split the files into tokens and to
create lists of keywords that are stored in the index and can be searched for.
We stress this aspect, because [9] do not state how the files were preprocessed
and tokenized and our results are not comparable to theirs (see details below).950

For more details on the build environment see Table 1a.
We chose a comparable environment as [9] (see Table 1c) but had to change

the runtime parameters to those depicted in Table 1b. The reasons are explained

24

in 9.1.
Originally, we planned to run our performance measurements in a somewhat955

realistic scenario with a real FTP server and virtualized network communication.
For this purpose a virtual machine was set up on the same host as the client
(see Table 1d). All network communication was sent through a virtual network
between the client and the FTP server running within the virtual machine.
However, we later modified the setup and replaced the network attached storage960

by a local storage (9.1).
We also used the Enron dataset [35] and selected random subsets of appro-

priate size for the experiments.

9.1. Preliminary remarks

In a first experiment we initialized the blind storage system with the param-965

eters used by Naveed, Prabhakaran, and Gunter, i.e. 222 blocks with 256 bytes
each or in other words 1GB of total storage space. The backend storage was
provided by a FTP server inside a virtual machine. The build phase of the blind
storage took about 590 s of effective CPU time (312 s in user space and 278 s in
system space) but roughly 6 hours of real execution time. We repeated the same970

experiment with a much smaller number of blocks and traced all function calls
by means of the profiling tool CallGrind as part of the instrumentation suite
Valgrind [36]. This revealed that 95% of the running time was spent within the
FTP client library. Each of the 222 blocks is represented by a single file that
needs to be transferred between the client and the server. No matter how the975

file transfer was scheduled (sequentially, n-parallel, reuse of TCP connections)
the FTP transfer represented a serious bottle neck. The initialization and ter-
mination of a individual file transfer creates a non-negligible overhead especially
if each file (or block) has only 256 bytes of payload. This still holds if the FTP
connection as a whole is kept open and is reused for all transfers.980

Naveed, Prabhakaran, and Gunter did not consider the IO time for their
performance analysis, hence we decided to replace the FTP storage by a local
storage4. After that the real execution time dropped down to 500 s (instead
of 6h). However, we stress that for any realistic deployment this is a serious
concern, because the whole point in having a blind storage system is to put it985

on some untrusted network storage. To ignore the time spent on network file
transfer leads to seriously misleading numbers.

Originally, we also planned to use the same runtime parameters as Naveed,
Prabhakaran, and Gunter, namely 222 blocks with 256 bytes each. However,
this choice of parameters lead to a waste of disk space. In order to store 222990

blocks (or files) one has to use a hierarchical naming scheme similar to the one
used internally by many proxy daemons. In our case the files representing the
blocks were enumerated from ./00/00/00.bin through ./3f/ff/ff.bin. This
directory structure already occupies disk space by itself. Moreover, a file size

4Essentially, all function calls to the FTP library were replaced by equivalent local system
calls

25

of 256 bytes cannot be recommended, because most filesystems allocate files in995

chunks of 4 kB. On an EXT-4 filesystem the bare directory structure already
used 0.5GB and the fully built blind storage scheme with 1 GB storage net
capacity used 34GB of tangible disk space.

Hence, we tweaked the parameters and used 218 blocks with 4kB each (see
Table 1b) to better match the underlying filesystem’s own parameters. With1000

these settings the bare directory structure only used 8.2MB and the complete
blind storage scheme allocated 1.1GB of real disc space, thus the overhead
dropped down to 10%. Moreover, the real execution time of the built phase
further declined to 125s whereby 12s were spent in user-space and 113s were
spent in kernel-space.1005

We stress that we did not calculate whether the modified settings offer the
same level of security and success probability. It is unlikely that they do, because
the number of blocks were reduced, but a storage and processing overhead of
34 is not acceptable for any realistic scenario.

9.2. Methodology1010

Naveed, Prabhakaran, and Gunter state that they concentrated on client-
side computation time and the reported numbers suggest that they somehow
calculated out the costs for IO operations (especially because they used a re-
mote DropBox as their backend). Moreover they report that the symmetric
encryption (AES) accounts for a significant part of the runtime. We cannot1015

support this statement if IO operations over a network are considered, but the
statement becomes true if all network operations are replaced by local disk IO.
In this case CallGrind [36] reports that 35 % of the runtime is spent inside the
AES library.

However, it remains unclear how Naveed, Prabhakaran, and Gunter mea-1020

sured the “bare” computation time. One approach is to use an instrumentation
suite such as Valgrind [36] and look at the time being spent in individual func-
tion calls. However, this raises the question of functions to be instrumented;
moreover, this approach is highly implementation specific.

Another approach is to query the process scheduler of the operating system1025

and look at the amount of the process spent in user-space and kernel-space.
One could argue that the time spent in user-space is the “true” computation
time (tokenization, index calculation, encryption) while the time spent in kernel-
space is related to IO. However, this is misleading, since even after we replaced
all network IO by local file IO and thus reducing the total execution time of1030

the built phase of the blind storage from 6h to 125 s the process spent 90%
of its time in kernel-space (113 s vs. 12 s). However, as already stated 35% of
the runtime was due to the AES operations. These observations are consistent,
because a huge portion of the AES operation is memory management and thus
contributes to the execution time in kernel-space.1035

In summary, we decided to take the total execution time from process cre-
ation through process termination as reported by the Linux time-command.
Hence, we do not distinguish between different aspects of the execution time.

26

number of blocks (218) / total net size (GiB) 1 2 3 4 6 8

size of bare directory structure (MiB) 4.02 8.04 12.1 16.1 24.1 32.1
total gross size on disk (GiB) 1.01 2.02 3.04 4.05 6.07 8.09
overhead (%) 1.17 1.17 1.17 1.17 1.17 1.13

average total runtime (s) 62.8 125 189 250 375 501

Table 2: Parameters and results of test 1 (the block size was held constant at 4 kiB)

Total net size of files (MB) 1 2 4
Number of files 214 421 1267
Number of file-keyword-pairs 54945 111546 246657
Total execution time (s) 148 315 964

Table 3: Results of test 2: Indexing and uploading documents

With respect to practical deployment we argue this is a valid approach, because
a typical end-user is not concerned with what contributes to the runtime. How-1040

ever, we would like to point out that all numbers are generated with a local
storage backend, rather than a NAS backend.

9.3. Test 1: Building the Blind Storage System

Deviating from the numbers depicted in Table 1b the first series of tests built
a blind storage system at different sizes by varying the number of blocks. The1045

block size was kept at 4 kB to match the underlying filesystem. The results are
shown in Table 2.

Unsurprisingly, the runtime is linear in the total size of the Blind Storage
scheme.

9.4. Test 2: Indexing and uploading documents1050

Due to our changed runtime parameters (218 blocks 4kiB instead of 222

blocks 256B), we were unable to upload up to 256MiB of files, as the scheme
ran out of free first blocks prematurely. Recall that the largest test set of Naveed,
Prabhakaran, and Gunter was 256MiB. We were able to upload at most 8MiB,
as the Enron test set consists of tens of thousands of small ASCII files with each1055

file only consisting of a few bytes but each file occupies a integral multiple of the
block size. In our scenario this leads to significant fragmentation. However, our
findings are consistent with Naveed, Prabhakaran, and Gunter. As our block
size is 16 times larger, the possible maximum size of the total upload is expected
to be smaller by the same factor. The results are depicted in Table 3.1060

9.5. Test 3: Searching

Similar to Naveed, Prabhakaran, and Gunter we also search for the keyword
“the” in the uploaded Enron dataset. In addition to that, we also counted the

27

Total net size of files (MiB) 1 2 4
Total number of files 214 421 1267
Number of results 156 348 1020
Total execution time (ms) 97 186 435

Table 4: Results of test 3: Searching for the keyword “the”

time needed to handle the lazy delete strategy, as the lazy delete strategy is
essential for the security of the scheme and comes with significant costs.1065

Without this strategy searching for a specific keyword is merely downloading
the corresponding index file. This simplified task is extremely fast but the result
of the search may be incorrect. Whenever a file is modified (or deleted) it is
added to all index files for each keyword it contains after the modification (n.b.:
in case of deletion the file is added to no index, because the file is essentially1070

empty after deletion). This implies that each index may list a file multiple times
if old versions of the same file also contained the same keyword. Moreover,
a file might be listed although it does not contain the keyword anymore but
an outdated version of the same file did. The latter also holds if the file was
deleted. In order to get rid of such “phantom” entries, each entry in the index is1075

accompanied with a hash of the file content. Upon searching for a keyword, the
stored hash is compared to the hash of the current file content and if they differ
the entry is considered outdated and removed from the search result. Moreover,
the outdated entry is removed from the index and the revised index is written
back to the server. In order to be able to compare the stored hashes with the1080

current hash the first block of each file in the search result must be downloaded
from the server (via the Blind Storage Scheme) and locally decrypted. Even
worse, downloading a file also implies to upload a fresh re-encryption of the file
such that the server cannot distinguish between a read and a write access.

In summary, skipping the lazy deletion strategy does not reflect what would1085

actually happen if the scheme was deployed in practice. Hence, we argue that
taking the time of the lazy deletion strategy into account is the right way to
measure the performance.

The results are depicted in Table 4. Our findings indicate an execution time
that is slower than [9] by a factor of approximately 90. This is expected because1090

much time is spent in performing the consistency checks due to the lazy deletion
strategy.

9.6. Summary of the Implementation Report

We implemented the searchable encryption scheme via Blind Storage of
Naveed, Prabhakaran, and Gunter in order to reproduce their performance re-1095

sults and to experiment with its performance in practical situations. Unfortu-
nately, we cannot deny that – despite all improvements over previous schemes –
this scheme still fails to be practically useful. Basically, this is due to two main
reasons.

28

The first reason can be traced back to latencies within the network IO. The1100

security of the scheme stems from the fact that an individual file is randomly
scattered across many small chunks of data that needs to be transferred between
the client and the server. In fact, this is the same problem that oblivious RAM
(ORAM) also suffers from.

The second reason is that the scheme is highly wasteful in space. Both our1105

test scenario and the scenario of Naveed, Prabhakaran, and Gunter used a blind
storage with a net size of 1GB, but with different block sizes. Due to a 16
times smaller block size Naveed, Prabhakaran, and Gunter were able to upload
256MB into the blind storage. But this blind storage requires 34GB of space
on the underlying filesystem. Taking both factors together yields an overhead1110

by a factor of 136. We used a much larger block size that better matched the
underlying file system. Thus the gross usage was 1.01GiB. However, we could
only upload 8MiB into the blind storage system, which has yield a factor of
130. In both cases, both overhead factors are far from being practical, due to
the need to allocating two magnitudes more space than required to store the1115

data.

10. Conclusion

Cloud storage and computing is growing exponentially due to its cost effec-
tiveness, but it brings with it new security concerns. While security solutions
that protect the clients data from the cloud are urgently needed, they must1120

impact the clients’ functionality as little as possible. Dynamic searchable en-
cryption schemes can be very useful in this context. Indeed we have seen a lot of
progress in this area in the last couple of years [37, 38, 39, 40]. Considering the
latest developments in the fiels, we first performed an extensive survey of the
literature of searchable encryption in order to determine the schemes that look1125

more appropriate for integration with cloud solutions. The scheme in [9] stand
out since it views the cloud as a simple storage service. Hence we proceeded
with an implementation of that scheme and performed experiments in order to
determine its practicality for real applications. Unfortunately, despite all theo-
retical progress presented by that scheme, it is still not practical for deployment1130

in most real-world applications. Perhaps, other state of the art dynamic search-
able encryption schemes which involve more interaction on the cloud side can
prove to be better suited for deployment in real systems, however we fear that
they can also fail to be practical enough for deployment. Searchable encryp-
tion has a lot of potential for increasing the security of cloud solutions. It is a1135

very interesting direction for future research, in order to obtain more practical
solutions that can be deployed in real applications.

References

[1] D. X. Song, D. Wagner, A. Perrig, Practical techniques for searches on
encrypted data, 2000, pp. 44–55.1140

29

[2] E.-J. Goh, Secure indexes, Cryptology ePrint Archive, Report 2003/216,
http://eprint.iacr.org/2003/216 (2003).

[3] R. Curtmola, J. A. Garay, S. Kamara, R. Ostrovsky, Searchable symmetric
encryption: improved definitions and efficient constructions, 2006, pp. 79–
88.1145

[4] M. Chase, S. Kamara, Structured encryption and controlled disclosure,
2010, pp. 577–594.

[5] S. Kamara, C. Papamanthou, T. Roeder, Dynamic searchable symmetric
encryption, 2012, pp. 965–976.

[6] K. Kurosawa, Y. Ohtaki, UC-secure searchable symmetric encryption,1150

2012, pp. 285–298.

[7] S. Kamara, C. Papamanthou, Parallel and dynamic searchable symmetric
encryption, 2013, pp. 258–274. doi:10.1007/978-3-642-39884-1_22.

[8] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu,
M. Steiner, Dynamic searchable encryption in very-large databases: Data1155

structures and implementation, 2014.

[9] M. Naveed, M. Prabhakaran, C. A. Gunter, Dynamic searchable encryption
via blind storage, 2014, pp. 639–654. doi:10.1109/SP.2014.47.

[10] F. Hahn, F. Kerschbaum, Searchable encryption with secure and efficient
updates, 2014, pp. 310–320.1160

[11] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, M. Steiner,
Highly-scalable searchable symmetric encryption with support for boolean
queries, 2013, pp. 353–373. doi:10.1007/978-3-642-40041-4_20.

[12] S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, M. Steiner, Outsourced
symmetric private information retrieval, 2013, pp. 875–888.1165

[13] D. Boneh, G. Di Crescenzo, R. Ostrovsky, G. Persiano, Public key encryp-
tion with keyword search, 2004, pp. 506–522.

[14] D. Boneh, B. Waters, Conjunctive, subset, and range queries on encrypted
data, 2007, pp. 535–554.

[15] A. Michalas, N. Paladi, C. Gehrmann, Security aspects of e-health systems1170

migration to the cloud, in: e-Health Networking, Applications and Services
(Healthcom), 2014 IEEE 16th International Conference on, IEEE, 2014,
pp. 212–218.

[16] N. Paladi, C. Gehrmann, A. Michalas, Providing user security guarantees
in public infrastructure clouds, IEEE Transactions on Cloud Computing1175

PP (99) (2016) 1–1. doi:10.1109/TCC.2016.2525991.

30

http://eprint.iacr.org/2003/216
http://dx.doi.org/10.1007/978-3-642-39884-1_22
http://dx.doi.org/10.1109/SP.2014.47
http://dx.doi.org/10.1007/978-3-642-40041-4_20
http://dx.doi.org/10.1109/TCC.2016.2525991

[17] N. Paladi, A. Michalas, C. Gehrmann, Domain based storage protection
with secure access control for the cloud, in: Proceedings of the 2014 Inter-
national Workshop on Security in Cloud Computing, ASIACCS ’14, ACM,
New York, NY, USA, 2014.1180

[18] M. Blaze, G. Bleumer, M. Strauss, Divertible protocols and atomic proxy
cryptography, 1998, pp. 127–144.

[19] N. Paladi, A. Michalas, “One of our hosts in another country”: Challenges
of data geolocation in cloud storage, in: Wireless Communications, Ve-
hicular Technology, Information Theory and Aerospace Electronic Systems1185

(VITAE), 2014 4th International Conference on, 2014, pp. 1–6.

[20] C. Gentry, A fully homomorphic encryption scheme, Ph.D. thesis, Stanford,
CA, USA, aAI3382729 (2009).

[21] T. Dimitriou, A. Michalas, Multi-party trust computation in decentralized
environments, in: 2012 5th International Conference on New Technologies,1190

Mobility and Security (NTMS), 2012, pp. 1–5. doi:10.1109/NTMS.2012.

6208686.

[22] T. Dimitriou, A. Michalas, Multi-party trust computation in decentralized
environments in the presence of malicious adversaries, Ad Hoc Networks
15 (2014) 53–66. doi:10.1016/j.adhoc.2013.04.013.1195

URL http://dx.doi.org/10.1016/j.adhoc.2013.04.013

[23] R. Ostrovsky, Efficient computation on oblivious RAMs, 1990, pp. 514–523.

[24] O. Goldreich, R. Ostrovsky, Software protection and simulation on oblivi-
ous rams, J. ACM 43 (3) (1996) 431–473. doi:10.1145/233551.233553.
URL http://doi.acm.org/10.1145/233551.2335531200

[25] B. H. Bloom, Space/time trade-offs in hash coding with allowable errors,
Commun. ACM 13 (7) (1970) 422–426. doi:10.1145/362686.362692.
URL http://doi.acm.org/10.1145/362686.362692

[26] Y.-C. Chang, M. Mitzenmacher, Privacy preserving keyword searches on
remote encrypted data, 2005, pp. 442–455.1205

[27] R. Canetti, Universally composable security: A new paradigm for crypto-
graphic protocols, 2001, pp. 136–145.

[28] P. van Liesdonk, S. Sedghi, J. Doumen, P. Hartel, W. Jonker, Com-
putationally efficient searchable symmetric encryption, in: W. Jonker,
M. Petkovi (Eds.), Secure Data Management, Vol. 6358 of Lecture Notes1210

in Computer Science, Springer Berlin Heidelberg, 2010, pp. 87–100. doi:

10.1007/978-3-642-15546-8_7.
URL http://dx.doi.org/10.1007/978-3-642-15546-8_7

31

http://dx.doi.org/10.1109/NTMS.2012.6208686
http://dx.doi.org/10.1109/NTMS.2012.6208686
http://dx.doi.org/10.1109/NTMS.2012.6208686
http://dx.doi.org/10.1016/j.adhoc.2013.04.013
http://dx.doi.org/10.1016/j.adhoc.2013.04.013
http://dx.doi.org/10.1016/j.adhoc.2013.04.013
http://dx.doi.org/10.1016/j.adhoc.2013.04.013
http://dx.doi.org/10.1016/j.adhoc.2013.04.013
http://doi.acm.org/10.1145/233551.233553
http://doi.acm.org/10.1145/233551.233553
http://doi.acm.org/10.1145/233551.233553
http://dx.doi.org/10.1145/233551.233553
http://doi.acm.org/10.1145/233551.233553
http://doi.acm.org/10.1145/362686.362692
http://dx.doi.org/10.1145/362686.362692
http://doi.acm.org/10.1145/362686.362692
http://dx.doi.org/10.1007/978-3-642-15546-8_7
http://dx.doi.org/10.1007/978-3-642-15546-8_7
http://dx.doi.org/10.1007/978-3-642-15546-8_7
http://dx.doi.org/10.1007/978-3-642-15546-8_7
http://dx.doi.org/10.1007/978-3-642-15546-8_7
http://dx.doi.org/10.1007/978-3-642-15546-8_7
http://dx.doi.org/10.1007/978-3-642-15546-8_7

[29] E. Stefanov, C. Papamanthou, E. Shi, Practical dynamic searchable en-
cryption with small leakage, 2014.1215

[30] P. van Liesdonk, S. Sedghi, J. Doumen, P. Hartel, W. Jonker, Com-
putationally Efficient Searchable Symmetric Encryption, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010, pp. 87–100. doi:10.1007/

978-3-642-15546-8_7.
URL https://doi.org/10.1007/978-3-642-15546-8_71220

[31] Boost c++ libraries (8 2014).
URL http://www.boost.org/

[32] Crypto++ library (11 2015).
URL https://www.cryptopp.com/

[33] J.-P. Barrette-LaPierre, curlpp (5 2015).1225

URL http://www.curlpp.org/

[34] curl and libcurl (12 2015).
URL http://curl.haxx.se/

[35] Enron email dataset (5 2015).
URL https://www.cs.cmu.edu/~enron/1230

[36] J. Seward, C. Armour-Brown, C. Borntrger, J. Fitzhardinge, T. Hughes,
P. Jovanovic, D. Jevtic, F. Krohm, C. Love, M. Johnson, P. Mackerras,
D. Müller, N. Nethercote, P. Pavlu, I. Raisr, B. V. Assche, R. Walsh,
P. Waroquiers, J. Weidendorfer, Valgrind (9 2015).
URL http://valgrind.org/1235

[37] Y. Verginadis, A. Michalas, P. Gouvas, G. Schiefer, G. Hbsch, I. Paraskakis,
Paasword: A holistic data privacy and security by design framework
for cloud services, in: Proceedings of the 5th International Conference
on Cloud Computing and Services Science, 2015, pp. 206–213. doi:

10.5220/0005489302060213.1240

[38] A. Michalas, R. Dowsley, Towards trusted ehealth services in the cloud,
in: 2015 IEEE/ACM 8th International Conference on Utility and Cloud
Computing (UCC), 2015, pp. 618–623. doi:10.1109/UCC.2015.108.

[39] A. Michalas, K. Y. Yigzaw, Locless: Do you really care your cloud files
are?, in: 2016 IEEE/ACM 9th International Conference on Utility and1245

Cloud Computing (UCC), 2015, pp. 618–623.

[40] Y. Verginadis, A. Michalas, P. Gouvas, G. Schiefer, G. Hübsch,
I. Paraskakis, Paasword: A holistic data privacy and security by de-
sign framework for cloud services, 2017, pp. 1–16. doi:10.1007/

s10723-017-9394-2.1250

URL http://dx.doi.org/10.1007/s10723-017-9394-2

32

https://doi.org/10.1007/978-3-642-15546-8_7
https://doi.org/10.1007/978-3-642-15546-8_7
https://doi.org/10.1007/978-3-642-15546-8_7
http://dx.doi.org/10.1007/978-3-642-15546-8_7
http://dx.doi.org/10.1007/978-3-642-15546-8_7
http://dx.doi.org/10.1007/978-3-642-15546-8_7
https://doi.org/10.1007/978-3-642-15546-8_7
http://www.boost.org/
http://www.boost.org/
https://www.cryptopp.com/
https://www.cryptopp.com/
http://www.curlpp.org/
http://www.curlpp.org/
http://curl.haxx.se/
http://curl.haxx.se/
https://www.cs.cmu.edu/~enron/
https://www.cs.cmu.edu/~enron/
http://valgrind.org/
http://valgrind.org/
http://dx.doi.org/10.5220/0005489302060213
http://dx.doi.org/10.5220/0005489302060213
http://dx.doi.org/10.5220/0005489302060213
http://dx.doi.org/10.1109/UCC.2015.108
http://dx.doi.org/10.1007/s10723-017-9394-2
http://dx.doi.org/10.1007/s10723-017-9394-2
http://dx.doi.org/10.1007/s10723-017-9394-2
http://dx.doi.org/10.1007/s10723-017-9394-2
http://dx.doi.org/10.1007/s10723-017-9394-2
http://dx.doi.org/10.1007/s10723-017-9394-2
http://dx.doi.org/10.1007/s10723-017-9394-2

	Introduction
	Our Contribution
	Organization

	Why Searchable Encryption Squarely Fits the Cloud
	General Model of Searchable Encryption
	Existing Approaches
	Two-Layered Encryption Scheme
	(Forward) Index Approach
	Inverted Index Approach
	Achieving Dynamicity Using a Deletion Array
	Achieving Dynamicity by Learning the Inverted Index On-the-Fly

	Keyword Red-Black Tree
	Dictionary Entry per Combination of File and Keyword
	Hierarchical Structure of Logarithmic Levels
	Blind Storage
	Extensions to More Complex Queries and Models

	Privacy Issues
	Efficiency
	Openstack
	Architectural Overview
	Storage Protection Mechanims
	Searchable Encryption in OpenStack

	Recommendation for Implementation
	Experimental Results
	Preliminary remarks
	Methodology
	Test 1: Building the Blind Storage System
	Test 2: Indexing and uploading documents
	Test 3: Searching
	Summary of the Implementation Report

	Conclusion

