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Abstract—The advent of cloud computing and storage provides
numerous opportunities for better management of resources, with
the potential of drastically reducing costs. However, when data
is outsourced to the cloud, new security vulnerabilities emerge,
as the cloud provider (and its employees) are normally not
completely trusted by the party that is outsourcing the data.
Therefore additional security mechanisms are needed in order to
prevent against internal attacks in the cloud provider. Nonethe-
less, the performance and functionality should be impacted as less
as possible. This work presents a database adapter for the secure
outsourcing of data that aims at achieving a good performance-
security trade-off.

Index Terms—Database Adapter, Secure Outsourcing, Side-
Channel Attacks, Data Distribution.

I. INTRODUCTION

Cloud computing and cloud storage provide a myriad of
possibilities for companies to promptly adjust their computing
resources to meet their ever-changing requirements in a cost-
effective way. Accordingly, there is a rapidly growing interest
in outsourcing databases to the cloud. However, when a
database is outsourced to a cloud, new security issues appear
as the cloud provider (and its administrators) are not always
completely trusted by the database owner. Therefore there
is an inherent need to protect the database against internal
adversaries (e.g., cloud administrators). This work deals with
the problem of enhancing the security of outsourced databases
while preserving their functionality. On one hand, the security
level should be increased. On the other hand, the functionality
and performance of the database should not suffer a big
impact. Given the current state of affairs in the field of
cryptography, this requires us to choose a good trade-off
between performance and security. This work describes the
approach adopted in EU research project PaaSword1.

From a theoretical point of view, there are very powerful
cryptographic solutions for this problem which can achieve
very strong security levels while preserving the functionality.
Fully homomorphic encryption (FHE [1]) is one example of
a cryptography primitive that could be useful in such context
since it provides the ability to perform operations over the
encrypted data. However, from a practical point of view, it
is an unacceptable solution as its current performance is by
far insufficient for practical use. Another possible approach
would be to encrypt all the data before sending it to the storage

1https://www.paasword.eu

Fig. 1. A Database Adapter for Secure Outsourcing.

server, and then downloading all the data for local decryption
and processing whenever some operation is needed. But it is
obvious that this approach scales very badly with large data
sets and therefore cannot be used in real world deployments.
This work is focused on a more practical approach that aims at
a reasonable trade-off between security and efficiency. Cryp-
tographic primitives such as deterministic encryption can be
used to obtain a better performance-security balance. Another
possible direction for improving security without a significant
degradation in performance is the usage of algorithms for data
distribution among servers. Ideally, each type of data would be
distributed to a different server in order to decrease the impact
of internal attacks. However, normally, there are a limited
number of servers and this method does not scale. Therefore
more than one type of data need to be stored in each server and
so data distribution schemes that respect privacy constraints
should be used instead.

From a security viewpoint, the idea used in PaaSword is to
introduce an entity to automatically distribute and encrypt data
before it is uploaded into the cloud as depicted in Figure 1.
We call this entity the DB proxy or just proxy. It acts as an
adapter to give an application transparent access to a secure
and distributed database. We focus on internal passive adver-
saries (e.g., cloud administrators) as we assume that cloud
service providers offer high level of security against external
adversaries by employing standard cryptographic mechanisms
to mitigate this threat.

A. Database Adapter for Secure Outsourcing

The idea of using a database adapter in order to provide
security guarantees was previously used in the MimoSecco
project [2]. The PaaSword database adapter is an enhanced
version of the MimoSecco one that deals with many of the



Fig. 2. Operation of the MimoSecco database adapter.

TABLE I
ORIGINAL DATA BEFORE THE TRANSFORMATION.

Row Name Surname City
1 Jacob Anderson New York
2 Sophia Anderson Chicago
3 Emma Connor Los Angeles

previous security shortcuts and improves the performance and
functionality. In order to better contextualize the improvements
we present here a short overview of the MimoSecco database
adapter.

MimoSecco [2] is a cloud-storage technique for securing
relational databases that considered a model with three differ-
ent security zones: the zone in which the client is located is
assumed to be completely trusted. The zone in which the cloud
storage is located is untrusted and the cloud provider is con-
sidered to be an honest-but-curious adversary; i.e., it follows
the protocol instructions correctly, but tries to learn additional
information. This captures for instance attacks launched by
the cloud administrator. In the middle there is a semi-trusted
zone, in which there is an adapter that provides access to the
cloud storage.

The SQL queries made by the client to the database proxy
are converted to SQL queries that the proxy forwards to the
cloud storage, see Figure 2. The main goal of the MimoSecco
adapter is to hide the relation between the attributes, rather
than the attributes themselves. This is done by creating two
different classes of tables: encrypted data tables (which store
the data encrypted) and index tables (which are used to
perform the SQL queries). The behavior of the adapter as
well as an example of the table’s division is presented below:
Table I presents the original data before the transformation is
applied; Table II depicts the index tables after the transfor-
mation and Table III shows the encrypted data table after the
transformation. The resulting data table contains the same data,
but encrypted row-wise using a randomized encryption scheme
(all the attributes are concatenated into a single ciphertext).
The index tables contain encrypted links to positions in the
data table and are responsible for allowing fast look-up.

The MimoSecco scheme achieves the security notion called

TABLE II
INDEX TABLES AFTER THE TRANSFORMATION.

Keyword Rowlist Keyword Rowlist
Emma Enc(3) Anderson Enc(1‖2)
Jacob Enc(1) Connor Enc(3)
Sophia Enc(2)

TABLE III
ENCRYPTED DATA TABLE AFTER THE TRANSFORMATION.

Row Encrypted Data
1 Enc(Jacob‖Anderson‖New York)
2 Enc(Sophia‖Anderson‖Chicago)
3 Enc(Emma‖Connor‖Los Angeles)

IND-ICP [3], [4] that guarantees that the relation among the
attributes is not leaked. However, there is data that is sensitive
even when considered out of context, such as credit card
numbers for instance. Such data needs to be protected by
not being stored in clear text. Additionally, the MimoSecco
architecture also have challenges dealing with side-channel
attacks, which exploit aspects of the real deployment that
are not modeled by the security model (examples of such
attacks will be described in Section III). The PaaSword
database adapter presents security improvements that deal with
the above mentioned problems. To tackle this problem we
introduced countermeasures based on the encryption of the
index tables as well as on the distribution of the tables among
many servers.

II. RELATED WORK

There are several approaches to securely outsource data to
potentially untrusted environments such as external servers or
public clouds. The requirements for such solutions are not only
protection against loss of sensitive data but also the ability
to perform searches and other kinds of computations on the
outsourced data in a efficient manner.

For example, homomorphic encryption, which was intro-
duced by Rivest et al. [5], allows to do mathematical calcu-
lations on ciphertexts such as either addition [6] or multipli-
cation [7], [8], [9]. A fully homomorphic encryption scheme
(i.e., a scheme allowing both addition and multiplication, and
thus allowing the computation of any algebraic circuit) was
first introduced by Gentry [1]. Despite being a very powerful
primitive and representing one of the hottest research topics in
cryptography recently, the state-of-the-art fully homomorphic
encryption schemes are not practical enough for real world
deployment.

Order-preserving encryption (OPE) schemes have the goal
of allowing to efficiently compare the order based only on the
corresponding ciphertexts. Agrawal et al. [10] proposed such a
scheme in which numerical plaintexts are mapped to randomly
selected values (the ciphertexts) from a chosen statistical
distribution. Obviously this approach can only be secure if
the domain of the distribution is big enough. Therefore the
suggestion [11], [12] is to use hyper-geometrical distributions
with the “Lazy Sampling” technique which allows to find



ciphertexts more securely and comfortably. A different hybrid
approach to realize order-preserving encryption was proposed
by Popa et al. [13]. Here (non order-preserving) ciphertexts
are organized in a binary tree so that the order of the nodes
fits the order of the plaintexts.

Another special type of encryption scheme that has the goal
of allowing a particular type of operation over the ciphertexts
is searchable encryption (SE). Here the goal is allowing to
efficiently search keywords in encrypted documents. Song et
al. [14] proposed the first encryption scheme, with a two-fold
scheme in which a ciphertext contains, next to the encryption
of the plaintext, a specially generated hash value. If a search
on outsourced ciphertexts is made, the client can generate a
trapdoor for a keyword. Using both the hash value of the
ciphertexts and the trapdoor of the client, the server is able to
find those ciphertexts. A lot of works have further developed
the field of searchable encryption schemes, e.g. [15], [16]. One
of the main applications of searchable encryption is in cloud
solutions, see e.g. [17], [18]. Cash et al. [19] showed how to
extend the data structures of SSE schemes that allow single-
keyword searches in order to permit more expressive queries
such as conjunctive search and general Boolean queries. The
research in the area of searchable encryption schemes is still
very active nowadays. For a recent survey about searchable
encryption and its relevance for cloud computing, see [20].

Beside the cryptographic schemes, there are other hybrid
approaches that combine the use of normal encryption schemes
and techniques for data management. One approach published
by Hacigümüs et al. [21] suggested to encrypt database entries
row-wise and use an adapter to translate queries to the database
as well as to take care of encryption and decryption. Hore
et al. [22] proceeded the work of Hacigümüs et al. [21]
and suggested performance improvements by indexing the
encrypted database entries. Another interesting approach is
the onion encryption that was made public by the CryptDB
project of Popa et al. [23]. In this approach a mixture of
common, SE, OPE and homomorphic encryption schemes are
applied to a plaintext in a specific order so that a plaintext is
wrapped in multiple encryption layers. If, for example, a range
query is executed and the ciphertexts have to be compared
by their order, all encryption layers of the ciphertexts are
removed (decrypted) until the layer of OPE is revealed and
the query can be executed on the ciphertexts. The downside
of this approach is that the security guarantees for the user are
unclear because the goal is to give the server the least amount
of knowledge needed to process the queries. As a result a
single query might lead to a permanent decryption of onions
hence sensitive information cannot be encrypted again.

There are also approaches that do not implement security by
encryption but by the distribution of data. Aggarwal et al. [24]
suggested so-called privacy constraints to separate columns of
databases that together have a high information leakage to
an attacker. They suggested separating and distributing those
columns that should not be stored together to different non-
communicating servers so that the possibility for an attacker to
learn sensitive data is decreased. Ciriani et al. [25] afterwards

published an algorithm to detect and apply such privacy
constraints on databases.

The PaaSword project itself is a hybrid and index-based
approach that is a derivative of prior research projects such
as Cumulus4j [3] and MimoSecco [2]. In PaaSword the
encryption key is not stored locally on the database adapter;
instead a distributed key management mechanism is used (see
[26] for more details).

III. SIDE-CHANNEL ATTACKS

As already mentioned in the introduction, the MimoSecco
adapter (the predecessor of the PaaSword adapter) achieves
the IND-ICP security notion [3], [4], which guarantees that the
relation among the attributes is not leaked. However, in real
world deployments there are normally side-channels attacks
that are not covered by the security model. And, in fact,
Huber and Hartung [4] showed some side-channel attacks
against the MimoSecco adapter. We should emphasize that
vulnerabilities to side-channel attacks is not a specific problem
of the MimoSecco scheme, it is a general problem.

The following examples illustrate the concept of side-
channel attacks:

• Background knowledge: An adversary with background
knowledge, for instance that men cannot be pregnant,
can from the permuted database already exclude some
possibilities for the original database. This attack is not
captured by the IND-ICP security notion.

• Access statistics: By observing the time and order of the
accesses to the index tables, the adversary can learn valu-
able information as correlated data is normally accessed
in short time intervals.

• Database updates: Upon updates of the database, an
adversary can learn some relation among the attributes
by observing the updates in the index tables. This attack
is also not modeled in the IND-ICP security notion.

• Order of physical storage: The order of the physical
storage can be different from that of the model, and this
can help the adversary. The physical order can possibly
reflect the inclusion order.

A. Counter-measures

Some of the counter-measures that can be used to mitigate
side-channel attacks include:

• Deterministic encryption of the indexes: By encrypting
the keywords of the indexes tables using a determin-
istic encryption scheme it is possible to reduce the
effectiveness of side-channels attacks as the cloud does
not get plaintext anymore. And, since the encryption
is deterministic, it is still possible to perform exact
match queries efficiently. The PaaSword database adapter
enables the use of deterministic encryption of the indexes.
More information is presented in Section IV. Searchable
encryption schemes can even provide a higher level of
security, at the cost lower performance (see [20] for a
recent survey of that area).



Fig. 3. The PaaSword Database Adapter.

• Order-preserving encryption: Similarly, by using order-
preserving encryption, it is possible to reduce the effec-
tiveness of side-channels attacks while keeping efficient
range queries.

• Delayed updates: By caching and permuting the updates
in the database adapter and performing many updates
simultaneously, the effectiveness of the side-channels
based on database updates can be reduced.

• Distributed storage: By storing the different index tables
in different servers that do not communicate with each
other it is possible to drastically reduce the effectiveness
of side-channels attacks. Ideally, each index table would
be stored in a different server, but in practice there
are limitations on the number of non-communicating
servers that are available. Therefore one needs to adopt
solutions based on data distribution that complies with
privacy constraints established by the database owner.
The PaaSword adapter enables the distributed storage
and also implements an algorithm to, given the privacy
constrains, determine the way that the data should be
distributed among the available servers.

IV. ENCRYPTED INDEX

As already mentioned in the introduction, the PaaSword
database adapter follows the same design paradigm as Mi-
moSecco [2]. However, one of the countermeasures against
side-channel attacks of the PaaSword adapter is enabling the
deterministic encryption of the keywords in the index tables (in
addition to randomized encryption of the links in those tables).
See Figure 3 for the depiction of the PaaSword database
adapter. For the same original data as presented before in
Table I, the index tables in PaaSword would look like Table IV
(compare that with MimoSecco index tables in Table II). The
names (Emma, Jacob, Sophia) and surnames (Anderson and
Connor) are encrypted using a deterministic scheme.

Keywords stored in clear in the index tables can help an
adversary to gain some information about the original database
if he has background knowledge, or if he has the opportunity

TABLE IV
INDEX TABLES IN PAASWORD.

Keyword Rowlist
0x0B34 = DetEnc(Sophia) Enc(2)
0x78AB = DetEnc(Emma) Enc(3)
0xC134 = DetEnc(Jacob) Enc(1)

Keyword Rowlist
0x5AFE = DetEnc(Anderson) Enc(1‖2)
0x7732 = DetEnc(Connor) Enc(3)

to observe database updates, access statistics or physical order
of data entries on the storage. Deterministic encryption of
keyword values in the index tables is a good approach that
can be applied in order to come down to a trade-off between
security and providing efficient support for as many different
query types as possible. If the keywords values are encrypted,
it is more difficult for the adversary to perform side-channel
attacks. At the same time, since the encryption is deterministic,
a user can still execute exact-match queries.

For example, when the database adapter gets a query for
the name Emma, it encrypts Emma with the determinis-
tic encryption scheme in order to obtain 0x78AB and then
search for this value in the index table. As a result he gets
Enc(3), the encrypted link (using a randomized encryption
scheme) to the row corresponding to Emma. The adapter
then decrypts the value to 3 and requests the third row from
the data table. Upon receiving the (randomized) encryption
Enc(Emma‖Connor‖Los Angeles), the adapter can decrypt it
to get Emma’s attributes. Negation and IN queries can be
supported in a similar way using standard set operations.

V. PRESERVING FUNCTIONALITY WHEN USING AN
ENCRYPTED INDEX

The deterministic encryption of the keywords in the index
tables comes with some disadvantages regarding the query
support and the performance of the database adapter. Foremost
it is to be said that the database adapter is capable of handling
all types of queries. But with encrypted keywords for some
queries there is a significant loss in performance. Firstly there
is a small overhead in analyzing and rewriting the query
because the plaintext values in it have to be encrypted before
executing the query on the tables. As already mentioned exact-
match queries come with this minor performance loss because
matching plaintexts is equal to matching ciphertexts if they
are encrypted with a deterministic scheme. But other kinds
of queries face a much larger disadvantage. For range queries
that use <,≤,≥, > or the BETWEEN operator in WHERE
statements, all keyword values related to the queried column
have to be decrypted before the actual query is executed.
This is because the ciphertexts do not preserve order. Also
LIKE statements that use the wildcard operator % are very
difficult to handle because there is no way to tell for a
ciphertext which plaintext characters are mapped to characters
of the ciphertext. Here the solution is also the decryption
of all relevant keywords. For aggregates like SUM or AVG



the encryption of keywords has a minor effect since these
are calculated based on the entries of the data table. These
entries are encrypted by a randomized encryption scheme and
thus have to be completely decrypted if an aggregate function
should be applied to them. The COUNT function is also not
affected since it just reflects the number of returned rows of the
data table. If a query that contains aggregates uses a WHERE
statement, all above mentioned disadvantages apply to it. The
same applies for INSERT, UPDATE and DELETE operations.

For a sufficiently small database this overhead of possibly
decrypting all keywords tends to be negligible. But outsourced
databases tend to be huge and grow over time and thus the
amount of decryption cycles will rise as well. This might lead
to a bad performance in big-data scenarios if many non-exact
match queries are issued. A solution to this problem might be
to distribute the keywords among multiple non-communicating
servers (see Aggarwal et al. [24]), so that each server only
contains the keywords for a subset of columns of the database
tables. The keywords then can be left unencrypted if privacy
constraints are applied so that a possible attacker does not
learn relevant and related data. With plaintext keywords the
actual search can be done like in a normal database but in a
distributed fashion. Now there is an overhead in building up
secure connections (TLS) to transfer the identifiers from the
servers, but this overhead does not directly correlate with the
amount of keywords. This scenario would allow even more
performance and security improvements because queries can
be split up and processed in parallel and thus possible attackers
(on the servers) only learn a part of the entire query.

VI. IMPLEMENTATION AND BENCHMARKS

The implementation uses Java as the programming lan-
guage. For the database connection to PostgreSQL we use
the corresponding JDBC driver. The Advanced Encryption
Standard (AES) is the encryption algorithm and it is currently
used in the Cipher Block Chaining (CBC) mode of operation.
For future work employing Galois Counter Mode (GCM) is
an option. The PaaSword database adapter supports a wider
range of SQL query types than its predecessors.

Since deterministic encryption of keywords does not allow
for efficient execution of all query types, we compare the
performance of the improved middleware with the original
prototype without deterministic encryption of the keywords in
the index tables. We applied performance analysis methods
to the improved middleware and compared the results with
the original prototype. Figure 4 illustrates the execution time
of four different query types on the original middleware in
comparison to the middleware with encrypted indexes.

The comparison showed that our security improvement did
not lead to a big overhead. In the cases where the queries can
be executed efficiently (exact-match queries), our version of
the prototype computes results almost as fast as the original
version. In all of these cases, the execution time was maximum
of 12% longer. For the cases where queries could not be
effectively executed, our system with encrypted indices is
maximum of 40% slower, which is also a good result when

Fig. 4. Performance comparison of different query types on both the original
and the improved middleware.

considering that the privacy of the attribute values associations
is preserved and an adversary is not able to learn any sensitive
data.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper we introduced PaaSword data outsourcing
scheme that encrypts sensitive information before uploading
it to untrusted cloud providers. Encryption, decryption, query
analysis, processing and execution is handled by a trusted
adapter that we call the database proxy. It offers secure and
transparent access to a relational cloud database and uses a
reverse index to increase performance. We pointed out some
security issues, mainly due to side channels like access patterns
and background knowledge. These attacks can be mitigated
by deterministic index encryption and data distribution to
non-communicating servers. We showed how different query
classes can still be executed efficiently in most cases when
working with the more secure encrypted index. To prove
that our improved approach is working, we implemented the
adapter with index encryption and successfully validated the
results. Depending on the query type the overhead of index
encryption is negligible or at most 40% while a significant
gain privacy is achieved.

Future work will address a more efficient handling of
specific queries. Range queries (a < x < b) can be speeded
up by using order-preserving encryption schemes thus enabling
for sub-linear search time. For wildcard queries (name LIKE
’Emil%’), there exist sophisticated and complex approaches
that can be combined with our scheme. Another direction is
to support random addition, where a sensitive value v is split
into two values a and b such that v = a+b. Then, a and b are
distributed to different non-communicating servers such that
the adapter can still perform some operations like average and
mean efficiently by combining the computation results of the
two servers.
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