
A Distributed Key Management Approach
Rafael Dowsley∗, Matthias Gabel∗, Gerald Hübsch†, Gunther Schiefer∗ and Antonia Schwichtenberg†

∗ Karlsruhe Institute of Technology
Emails: {rafael.dowsley,matthias.gabel,gunther.schiefer}@kit.edu

† CAS Software AG
Emails: {gerald.huebsch,antonia.schwichtenberg}@cas.de

Abstract—Cloud computing provides reliable and highly-
scalable access to resources over the internet. But outsourcing
sensitive data to an probably untrusted cloud provider (third
party) requires cryptographic methods like encryption. This
paper presents a novel approach to a distributed cloud key
management scheme. In a setting with a public cloud application,
data is encrypted by a separate trusted adapter before storing
somewhere else. The encryption key is not persistently stored
at the adapter. Several entities share parts of the key that is
computed and temporarily stored at the adapter if needed. This
work describes how the key management is working during
bootstrapping and runtime as well as how key recovery can be
performed.

Index Terms—Key Management, Key Distribution, Cloud
Computing

I. INTRODUCTION

Wherever sensitive personal data is stored and processed,
security requirements are high. One good example are CRM
systems that hold information like addresses, dates of birth,
personal preferences and relations of any kind. These data
must be protected from theft and illegal processing.

The General Data Protection Regulation of the European
Union [6] names a number of abstract, negative effects that
a lack of appropriate technical and organisational measures
to ensure data protection can have on individuals. To make
them more concrete, consider the vast impact that illegal
manipulation of, for example, university applications, exam
registrations and exam results, will have on CVs and career
paths. The additional security requirements imposed on CRM
solutions for the management of students are therefore even
more drastic than those on classical CRM data. Only users
with the right permission should be allowed to gather and
process crucial personal data on behalf of the data owners.
In the example, such users are the members of the board
of examiners. Only they assign marks and store them in the
university’s CRM.

However, the main actors involved in any cloud-based
solution are administrators of the public data centre, the
solution provider, and all users with accounts to access the
application. Encryption as a way to protect personal data
against theft and illegal manipulation is only sufficient in case
all actors are completely trustworthy and the cryptographic
key cannot be compromised. In case only a single persistently
stored key is required to read the data, that key can be stolen

in a single attack against the data center, together with the
encrypted data, without any possibility of intervention after
the theft is recognized. As one possibility to increase the
level of protection in such scenarios, we propose a shared key
ownership model, in which the single key is split into different
parts that are distributed to all involved actors and combined
in volatile memory only when and as long as it is necessary.

Doing so has multiple advantages. No party is able to
process encrypted data without the others’ participation. This
includes the possibility to enforce data ownership through
the ownership of key parts. In an attack to compromise
the persistently stored key, all instead of one actor would
need to be attacked, increasing the chance of detection and
interim intervention. An attack to obtain the combined key is
aggravated by a limited time window that is difficult to predict
for the attacker, again increasing the chance of detecting the
attack before it is successful.

The remainder of this paper is structured as follows. Rele-
vant related work in key management for cloud scenarios is
presented in section II. The novel distributed key management
approach is described in detail in section III. Section IV
concludes this paper by discussing the applicability of the
distributed key management for Software-as-a-Service and a
brief outlook to future work.

II. RELATED WORK

To process data, today, it is still necessary to have it
unencrypted. But for security reasons it should be stored
encrypted to prevent unauthorized access (all data connections
must be encrypted as well). In addition, authorized access
should only be possible on behalf of the data owner, the tenant.
To share this data between the employees of this tenant, it is
necessary to encrypt the database with one tenant key that
should be only under the control of the tenant.

The most common place to store this tenant key is in a
cloud system itself (e.g. a cloud provider) where the database
is accessed [2]. This gives the operator of this system full
data access at all times without control by the tenant. To
avoid this, the sealed cloud approach [8] isolates the whole
system logically and physically from every administrative
access during runtime. Before administrative access is granted,
all data is stored encrypted with a key which is only known
to the tenant and deleted from memory. To restart the sealed



cloud, the tenant has to provide the key for data access again.
Another way to give the tenant more control of data access
is to have a specific key server operated by the tenant itself
[10], [7]. Every access to the data needs to fetch the key from
the tenant’s key server, which requires an authorization before
revealing the key. To avoid the necessity of operating a key
server, the MimoSecco project [9] secured the key by storing
it inside a secure hardware, which revealed the key only upon
tenant authorization (more precisely: by an authenticated user
which is authorized by the tenant to access the data).

Some cloud providers offer full data encryption for their
storage back-ends. Amazon S3 [1], [3] for instance provides
transparent data encryption. For encryption and decryption a
symmetric algorithm (currently AES-256) is used. This key,
however, is either managed and persistently stored by Amazon
itself that is then able to decrypt all data. Or – in case the user
manages the key and only uploads encrypted data – query
processing in the cloud is not possible. The only application
for this set-up is simple data storage with no queries being
performed.

Another approach is chosen by Damgård et. al [4]. The goal
is to have the keys available during busy times but to securely
store it during idle times.

In this work we chose a different approach. The tenant key
is split into multiple parts that are distributed and stored sepa-
rately by their owners. Owners are entities that are physically
or logically separated. They only reveal their key part to one
and the same trusted entity when data needs to be processed.

For three-tier web applications, there are three owners:
application users, the application itself and the DB proxy. The
DB proxy is the trusted entity. It composes the tenant key from
these parts for a limited time. When the proxy is idle, it does
not have access to this tenant key and only keeps a hash value
of it.

III. KEY MANAGEMENT MECHANISM

The key management mechanism describes the process of
how the keys for database access are prepared, distributed
and used during runtime. The cryptographic operations for
the creation of the database keys is not part of the key
management mechanism and is taken for granted. Also the
access control, performed by the cloud application, is not part
of this mechanism. In the PaaSword project1, where this key
management mechanism is used, exists more detailed work
about a context-sensitive access control.

A. Key Management Model

The PaaSword approach is based on an architecture that
separates the application A where the data is processed from
the DB proxy P whose task is to store and access the data
in a cloud database (see Figure 1)2. The key management for
data access shall avoid specific secure hardware. For security
reasons, the tenant key TK to access the database shall not

1https://www.paasword.eu
2The details of the database proxy P are not the focus of this work, more

details about it can be found in [5].

be stored at the DB proxy P where it would be beyond
the tenant’s control. On the other hand, the approach shall
avoid the necessity of running a key server at the tenant
side. Furthermore the tenant key TK shall not be available
at the application A, so the application or its administrator
cannot access the data at all times. In addition, not every
individual user should have the tenant key TK, due to the high
risk of losing the key or theft, especially if mobile devices
(smartphone, tablet, laptop) are used. If a user would have
the tenant key TK, he/she would be able to directly access
the database, bypassing the access control mechanism of the
application. In addition, we need one key per tenant, to share
access to the data to all users authorized by the tenant.

To fulfill all the requirements mentioned above, the ap-
proach of PaaSword is to split up the key in three parts and
give one part to the user U , one part to the application A and
one part to the DB proxy P . Therefore the tenant key TK is
split up in three parts TKU , TKA and TKP such that

TK = TKU ⊕ TKA ⊕ TKP

where ⊕ is the bit-wise XOR function. The user gets TKU , the
application TKA and the DB proxy TKP . Only if they work
together they can reconstruct the tenant key TK to access the
database.

To have the ability to withdraw the access possibility for
an individual user or to change the user part (TKU ) of the
tenant key (e.g. it is lost or stolen) without affecting any other
user it is necessary to have user individual triple sets of the
tenant key TK. Therefore the tenant key TK is split up user
individual for every user Ui in a way that:

TK = TKU1 ⊕ TKA1 ⊕ TKP1

= TKU2 ⊕ TKA2 ⊕ TKP2

= TKU3 ⊕ TKA3 ⊕ TKP3

= . . .

To create those user individual key triples, the tenant key TK
is handled as a bit-string, the length of TK is `. For each user
Ui, initially two uniformly random bit-strings, e.g., TKAi

and
TKPi

, of length ` are chosen. Then the third key, e.g., TKUi

is computed as

TKUi = TK⊕ TKAi ⊕ TKPi .

It is irrelevant which two keys are random and which is
computed from the other two and TK.

B. Key Management Setup

To set up this scenario, the process shown in Figure 2 is
used during bootstrapping time. The DB proxy P creates the
encrypted database (with key TK), stores the hash H(TK) of
TK for validation purpose, hands the tenant key TK to the
tenant admin and deletes TK from its memory. The tenant
admin splits up the tenant key TK for every user as described
above. He keeps TK and all TKUi in a safe place in case a
recovery is necessary. Afterwards the tenant admin distributes



Fig. 1. Overview of Data Access in the PaaSword System.

the individual TKUi to every user (Ui), all the TKAi to the
application A and all the TKPi to the DB proxy P . The
distribution to application A and DB proxy P is secured with
transport encryption and two-sided authorization. When the
setup is finished, the tenant admin could go offline to prevent
him from online attacks. He is only needed again in case of
recovery or to add new user.

C. Key Management during Runtime

Figure 3 shows the PaaSword key management mechanism
during runtime. The user (Ui) encrypts his individual part of
the key (TKUi ) together with a timestamp using the public key
of the DB proxy P (referred to as EncP (TKUi‖timestamp))
and adds it to his/her request to the application for processing
data. The application A controls the permission of the user
to process the data and if it is granted the application A can
use EncP (TKUi

‖timestamp) and its own user specific part of
the application key TKAi to request the necessary database
operations from the DB proxy P . The DB proxy P decrypts
EncP (TKUi

‖timestamp) and controls the timestamp. If the
timestamp is within the validity period, it reconstructs the
tenant key TK = TKUi

⊕TKAi
⊕TKPi

and does the requested
database operation. Afterwards P wipes TK from its memory.

D. Security assumptions

The confidentiality of the data in this process is based on
the assumption that the DB proxy P is secure during execution
time. Compromising the DB proxy P compromises the tenant
key TK as soon as the first query is made. To restore the
confidentiality, the database needs to be re-encrypted with a
new tenant key.

The access control cannot be bypassed by a user Ui alone
as TKAi would be missing to recover TK, but collaboration
between a user Ui and an administrator of the application A

allows temporary bypassing the access control. Together they
have the necessary key parts to create any desired database
request, but this does not compromise the tenant key TK.

To avoid replay attacks by the administrator of application
A, timestamps are used to restrict the validity period of TKUi ,
but the administrator of application A is able to modify a user
request to access other data than intended.

An external adversary in possession of the user credentials
(UIDi, Logini, TKUi ) would be able to access whatever
information the access control mechanism allows until the user
is withdrawn or the tenant admin set up new user-individual
keys.

To revoke a user from the system it’s only necessary to
delete one key part. This could be, for example, the part TKAi

at the Application A where also the access rights are set. It is
not necessary to destroy all copies of the user part.

E. Components of the Key Management Mechanism

The UML Component Diagram of Figure 4 depicts the main
components that comprise the Key Management Mechanism.
These components are further elaborated below.

As described above, the Tenant App is responsible for
bootstrapping the key management. The first step is to create
tenant certificates for signature and asymmetric encryption,
which are validated by the Tenant Certificate Management
component within the DB proxy P . The identity of the Tenant
App should be verified by using a one-time password that
is submitted separately (e.g. offline via phone, during a real-
life meeting, etc.). Afterwards, the Tenant App can request
the creation of a tenant specific encrypted database from the
DB Access component. The DB Access component hands the
tenant specific database key TK to the Tenant App, stores a
hash of TK for validation during runtime and deletes its own
copy of TK. Those two interfaces between Tenant App and



Fig. 2. Bootstrapping of the Key Management Mechanism.

Fig. 3. Key Management Mechanism during Runtime.

DB proxy P are only needed once for bootstrapping and can
be switched off afterwards.

The tenant administrator uses the Tenant App to create a
User ID UIDi, user individual keys TKUi

, TKAi
, TKPi

and
stores TK and all TKUi

as described above. The user keys
TKUi are distributed to every individual user and all TKAi ,
EncP (TKPi‖timestamp) are handed to the application A.
Therefore, the Application User Key Management component
of A offers an interface for the Tenant App to add, change or
withdraw a user and its keys:

• AddUser(UIDi,TKAi
,EncP (TKPi

‖timestamp))
• ChangeKey(UIDi,TKAi ,EncP (TKPi‖timestamp))
• WithdrawUser(UIDi)

To avoid manipulation by the administrator of applica-
tion A, the encrypted keys TKPi

for the DB proxy P
are complemented by a timestamp and are signed by the
Tenant App. UIDi, TKAi

are stored at the application A
and UIDi, EncP (TKPi‖timestamp) are forwarded to the
User Key Management of the DB proxy P . P decrypts

EncP (TKPi
‖timestamp) and validates the timestamp and sig-

nature before TKPi
is stored.

During runtime, every request to process data issued
by a user Ui to the application A has added UIDi,
EncP (TKUi

‖timestamp). To execute one user request, it can
be necessary for application A to perform more than one
database request. This makes it necessary that the validation
of every request is valid for a short timeframe. The application
A adds UIDi, EncP (TKUi

‖timestamp) and its part of the
key TKAi

to every database request which is needed to
perform the user request. The DB Access component decrypts
EncP (TKUi

‖timestamp) and controls the timestamp. If the
timestamp is within the validity period, it reconstructs the
tenant key TK = TKUi ⊕ TKAi ⊕ TKPi , validates it against
the stored hash and does the requested database operation.
Afterwards it wipes TK from its memory.

F. Key Recovery and Renewal

In a distributed architecture several entities can lose keys or
be corrupted. Our scheme can cope with such data losses and



Fig. 4. Key Management Component Diagram.

attacks as long as the tenant admin is not affected.
The most likely case is that a user Ui loses his key part

TKUi
. Since the tenant admin is physically near the user, the

recovery is very simple. After proper identification, the tenant
admin just gives the user a copy of TKUi

which he has stored
on his machine. If a user key TKUi is compromised it is also
very simple for the tenant admin to create new key parts for
user Ui and distribute them to user Ui, application A and DB
proxy P replacing the old ones.

In the unlikely case that the DB proxy loses the hash H(TK)
he can trigger a recovery where the tenant admin sends him
H(TK) again.

The only non-trivial case is when the application or the DB
proxy gets compromised or loses user keys. The goal is to
allow the users to keep their keys and only change the keys
for the application and proxy while TK remains the same. The
following pseudo code is executed for all users Ui:

• generate TKAi
randomly

• set TKPi
= TKAi

⊕ TKUi
⊕ TK with a bit-wise XOR

After resetting all key shares for the users at the application
and the proxy, TK can be reused because TK = TKUi

⊕
TKAi ⊕ TKPi and the users can continue using TKUi .

IV. DISCUSSION

The absence of need for secure hardware and key servers are
important properties of the presented approach for distributed
key management. These properties make it highly applicable in
Software-as-a-Service (SaaS) scenarios, the common delivery
model for business applications like CRM.

SaaS applications follow the client-server model. SaaS
application servers are centrally hosted installations that are

shared by all tenants. They are operated and maintained by
the application provider and typically run in an environment
provided as Platform-as-a-Service.

To implement sharing, these applications are built on top of
platforms with a multi-tenant architecture. Multi-tenant archi-
tectures implement tenant separation at the data layer through
either one individual database per tenant, one database schema
per tenant or shared database tables. Clients are typically
web clients for browsers, or mobile apps, that require only
standard hardware and no or only minimal local installation
by the user. Licenses are usually distributed in a self-service
manner, i.e. new tenants and their database/data schema are
automatically and dynamically created and provisioned upon
user request. The requesting user is typically the administrator
of the new tenant. After the tenant has been created, the typical
workflow is that the tenant administrator logs in to configure
his application instance, to create user accounts inside the
tenant as required, to assign permissions to these accounts,
and to make the credentials (UIDi, Logini) available to people
through a secure channel.

Securing SaaS applications through secure hardware or
even key servers on the user’s side would contradict their
nature and greatly limit benefits of the SaaS model. The
proposed approach for distributed key management allows
providers to build secure SaaS applications while maintaining
these benefits. This enables providers to create secure SaaS
solutions, like the university CRM introduced in section I,
that use encryption for tenant separation and to protect highly
sensitive personal data.

More specifically, the proposed approach can be directly
integrated into multi-tenant architectures that use either one



individual database per tenant or one database schema per
tenant. The application platform’s data layer must be modified
to use the DB Proxy instead of the regular database adapter,
while the logic layer must be extended to integrate the In-
teraction Handler and the Application User Key Management
component (see Figure 4).

Existing platform mechanisms to create new tenants can
easily adopt the creation of an encrypted database/database
schema described in section III. Uploading the tenant cer-
tificate before the creation of the tenant’s database/database
schema and the secure transmission of TK to the tenant
administrator are extensions to the tenant creation workflow
that are easy to implement.

Clients must be extended to transmit
EncP (TKPi

‖timestamp) with every request, and must
integrate the User Key Management component. In the case
of mobile apps, integration will usually be totally transparent
to the user, as it can be implemented by modifying the
mobile app. Web clients will use a portable and lightweight
http-proxy.

The Tenant App is only required by the tenant administrator.
Due to the simplicity of the key splitting operations, it can
either be distributed as a lightweight portable tool or run inside
a browser, using only client-side scripting for the key splitting
and key encryption operations. User key distribution simply
requires the tenant administrator to hand over (UIDi, Logini,
TKUi

) instead of (UIDi, Logini) over the secure channel of
his choice.

Decisions regarding the secure storage of TKUi
on the user

side must generally be taken by the tenant administrator. In
the most simple case, TKUi

may be stored in an encrypted text
file, protected by a key derived from a password only known
to user Ui.

Due to the possibility to create and assign user individ-
ual keys, the tenant administrator himself can maintain the
confidentiality of the encrypted data with the help of key
renewal, even in case user keys are lost or corrupted, without
intervention by the SaaS provider. Another feature of great
importance for the practical applicability of our approach is
the possibility of the tenant administrator to recover lost user
keys.

V. FUTURE WORK

Future work will extend the usage of the distributed key
management approach in two different directions. We consider
NoSQL support as essential for upcoming areas of application
like the Internet of Things, big data, and industry 4.0. It is
therefore planned to integrate the distributed key management
with encryption mechanisms for NoSQL databases.

We also consider developing a more fine-grained key split-
ting model that uses different keys for different database tables
instead of whole schemas or complete databases. Considering
the fact that there is usually a one-to-one mapping between the
datatype of a business object and a database table, this level
of granularity would enable the use of cryptographic keys to

enforce an application’s datatype permission system through
key ownership.

Currently, datatype permissions are enforced only by appli-
cation logic. In the example of the university CRM, all users
are theoretically able to read and modify all encrypted tables
of their tenant, because all tables are protected by the same
key TK.

A strong guarantee that the exam result table is only
accessible to members of the board of examiners is a desirable
property of the university CRM. Today, only the datatype
permission system of the CRM platform prevents, for example,
clerks from accessing the exam result table. In case of bugs
in the code that implements the datatype permission system,
there is a possibility that exam result table could be accessed
by clerks, even though it is encrypted. Using different keys for
different tables, only the board of examiners would receive key
parts required to access the exam result table. Clerks would
still be able to use the university CRM, but are unable to access
or even manipulate exam results, as they do not possess the
required key.

ACKNOWLEDGEMENTS

The research leading to these results has received funding from
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 644814, the PaaSword
project (www.paasword.eu) within the ICT Programme ICT-
07-2014: Advanced Cloud Infrastructures and Services.

REFERENCES

[1] Amazon Simple Storage Service Developer Guide
(API Version 2006-03-01) Available online at:
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html.
Last Accessed 23-08-2016.

[2] Amazon Web Services, Inc. Amazon EBS Encryption. Available online at:
docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html.
Last Accessed 23-08-2016.

[3] AWS Key Management Service (KMS) Available online at:
https://aws.amazon.com/en/kms/. Last Accessed 23-08-2016.

[4] Ivan Damgård and Thomas P. Jakobsen and Jesper Buus Nielsen and
Jakob I. Pagter. Secure Key Management in the Cloud. IMA Int. Conf.
2013: pp. 270–289, 2013.

[5] R. Dowsley, M. Gabel, K. Yurchenko, V. Zipf. A Database Adapter for
Secure Outsourcing. Manuscript, 2016.

[6] European Parliament and the Council. General Data Protection Reg-
ulation. Regulation (EU) 2016/679 of the European Parliament and
of the Council. Available online at: http://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32016R0679

[7] Fraunhofer Institute for Secure Information
Technology. OmniCloud Available online at:
http://www.omnicloud.sit.fraunhofer.de/index en.php, 2016. Last
Accessed 19-06-2016.

[8] H. A. Jäger, A. Monitzer, R. O. Rieken and E. Ernst. A Novel Set of
Measures against Insider Attacks - Sealed Cloud. In Detlef Hühnlein
(ed.), Heiko Roßnagel (ed.), Lecture Notes in Informatics - Open Identity
Summit 2013, pp. 187–197, Gesellschaft für Informatik, Bonn, 2013.

[9] J. Lehner, A. Oberweis, G. Schiefer. Data protection in the Cloud –
The MimoSecco Approach In Helmut Krcmar, Ralf Reussner, Bernhard
Rumpe, Trusted Cloud Computing, pp. 177-186, Springer, Heidelberg,
Januar 2015.

[10] NightLabs Consulting GmbH. Cumulus4j - Securing your data in the
cloud - Deployment scenarios. Available at: www.cumulus4j.org/latest-
stable/documentation/deployment-scenarios.html. Last Accessed 23-08-
2016.


