
Do You Know Where Your Cloud Files Are?

Karyn Benson Rafael Dowsley Hovav Shacham
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, California, USA

{kbenson,rdowsley,hovav}@cs.ucsd.edu

ABSTRACT
Clients of storage-as-a-service systems such as Amazon’s S3
want to be sure that the files they have entrusted to the
cloud are available now and will be available in the future.

Using protocols from previous work on proofs of retriev-
ability and on provable data possession, clients can verify
that their files are available now. But these protocols do not
guarantee that the files are replicated onto multiple drives or
multiple datacenters. Such tests are crucial if cloud storage
is to provide resilience to natural disasters and power out-
ages as well as improving the network latency to different
parts of the world.

In this paper, we study the problem of verifying that a
cloud storage provider replicates the data in diverse geolo-
cations. We provide a theoretical framework for verifying
this property. Our model accurately determines which Ama-
zon CloudFront location serves content for Planetlab nodes
across the continental US.

Our work is complementary to the recent paper of Bowers
et al., which uses different techniques to verify that files are
replicated across multiple drives in a single datacenter.

Categories and Subject Descriptors
H.3.2 [Information Storage]; D.4.6 [Security and Pro-
tection]; E.5 [Files]: Backup/Recovery

General Terms
Security, Measurement, Experimentation

Keywords
Cloud computing, Geolocation

1. INTRODUCTION
The cloud is quickly becoming a popular medium for stor-

ing and computing data. As data is transitioned off tradi-
tional servers and into the cloud, users give up direct control

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCSW’11, October 21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-1004-8/11/10 ...$10.00.

of their data in exchange for faster on-demand resources and
shared administrative costs. Inherent in cloud computing is
a trust and dependency on the cloud service provider. Re-
cently, customers of the Amazon’s EC2 cloud service lost
data permanently [2] and Hotmail users were upset when
it appeared as though their accounts had been wiped [13].
Consequently, it is important that a client be able to verify
that the services paid for are the services being provided. It
is conceivable that to cut costs a cloud provider may claim
one level of service but actually provide an inferior level.

One approach to such verification is to rely on contracts or
service-level agreements. But a contractual approach may
not detect misbehavior—whether malicious or accidental—
until it is too late. It is better to augment such an approach
with mechanisms by which clients can themselves verify that
the properties they rely on actually hold.

Many aspects of cloud computing can be verified by the
end user (speed, number of nodes). In one innovative ex-
ample, Zhang et al. [18] build on architectural side chan-
nels identified by Ristenpart et al. [16] to allow users of
infrastructure-as-a-service systems to verify that their vir-
tual machines are not coresident with other users’ VMs on
a physical machine. For users of storage-as-a-service sys-
tems, much work (discussed below) attempts to give users
assurance that their files are being stored.

Knowing that one’s files are being stored is not always
enough. What if they are stored on a single hard disk, and
that hard disk fails? Or in a single datacenter that later
experiences an outage? What is needed is a proof not just
that a file is being stored, but that it is being replicated,
onto multiple disks or in multiple geographic locations.

Traditionally, backups are kept in a different location than
the main server; resulting in the ability to restore service in
the face of power outages or natural disasters. As companies
expand globally, replicating data in diverse geolocations to
reduces bandwidth consumption and improves access speed.
In fact, Amazon SC3 boasts the ability to store data redun-
dantly “on multiple devices across multiple facilities in an
Amazon S3 Region [12].”

Accessing the data or executing a traditional Proof of Re-
trievability only proves that the provider has the data not
how many times it is in the cloud. Even if we had a pro-
tocol that allowed the user to check that the cloud provider
has multiple copies of the data stored, we would still need
to deal with the hard task of assuring that these copies are
stored in different geographic locations.

Besides ensuring proper data replication from a contrac-
tual standpoint, verifying that data exists in multiple loca-

tions has other interesting applications. For instance, a user
may not be interested in the precise location their data was
replicated but may require for regulatory compliance that
their data is stored in multiple locations. Companies pur-
chasing web advertisements may wish to verify that their ad
content is displayed to a geographically diverse demographic.

In this work we initiate the study of proofs of geographic
replication. The theoretical aspects of the system are ex-
plored in Section 3. We address some technical hurdles of
implementing the system using Planetlab and build a model
to predict geolocation in Section 4. Finally, in Section 5,
we successfully use the model to verify the geolocation of
data in Amazon’s cloud. Our work is complementary to the
recent paper of Bowers et al. [3], discussed below, which
gives proofs of replication among multiple drives in a single
datacenter.

2. RELATED WORK

2.1 Proofs of Retrievability
Proofs of Retrievability (PoR) [9, 17, 5] and Proofs of Data

Possession [1] are challenge-response protocols that allow a
client to verify efficiently that a file is really stored in a server
and that the integrity of the file is preserved. The naive
solution to this verification problem is to transmit the whole
file from the server to the client, but this is an impracticable
approach for large files (which is why users typically store
data in third-party servers) since the communication and
I/O accessing costs are too expensive. Therefore the PoR
schemes try to minimize the communication complexity, the
I/O accessing costs and also the storage space required in
the server and in the client.

In the particular case of computational unbounded-use
PoR (i.e., PoR schemes where a client can run an unlimited
number of audit-protocol interactions), the basic idea is to
add an authentication tag to each file block [5]. Then the
server should store these authentication tags together with
each file block and the client should only store the key used
to generate the authentication tags in order to run the ver-
ification protocol. To verify the response to an arbitrary
challenge the client takes the returned blocks, computes the
respective authentication tags and checks that they agree
with the authentication tags returned by the server. The
authentication tags can be, for instance, the result of apply-
ing a message authentication code (MAC) to the file block.

2.2 Proof Data was Replicated across Disks
Bowers et al. [3] recently developed a protocol that allows

a user to verify that his data is replicated on multiple disks
that are located in a single geolocation. The idea behind
their scheme is the time that a server needs to answer a
request to a group of file blocks depends on the number of
drives used to store the file.

More specifically, the adversary considered is a rational
one and it is assumed that the client and the server agree
upon the exact placement of the files blocks on the distinct
drives. The protocol relies on the seek time necessary to lo-
cate a random block on a drive (which is the dominant factor
in the time taken to access a random small file block. For
the purpose of reducing the variance of the sample, several
blocks are requested per drive). For the initial step of the
verification protocol, the client challenges the server with a
query consisting of one random block per drive, according

to the agreed-upon layout. For the following steps, the chal-
lenge blocks, also one per drive, are dependent on the con-
tents of all the blocks read in the previous step (therefore the
adversary cannot schedule the block access in a convenient
way to improve performance). Note that a honest server can
read all the blocks in parallel in each step, while dishonest
servers cannot. Thus, measuring the time spent on the re-
quest, the client can test if the cloud provider is storing the
files with the agreed level of redundancy. Of course in prac-
tice there are some complications related to the variance in
network latency and disk access time, but the authors were
able to overcome these difficulties and set up an experimen-
tal system. Particularly, using random blocks of 64KB in
the request, the authors noticed that the disk access times
are similar for modern enterprise class drives of different
manufacturers. Therefore, imposing a time constraint in
the protocol, the authors were able to develop a scheme to
ensure that the data is replicated on multiple disks.

The protocol provided by Bowers et al. in [3] provides
resilience to drive crashes and failures but does not readily
extend to the multiple geolocation setting. For all steps ex-
cept the first one, the challenge blocks are dependent on the
contents of all the blocks read in the previous step. Hence
all disks are required to be in the same place for the protocol
to execute correctly within the time constraints.

Our proposed solution also uses the idea of imposing a
time constraint, but in a different way and with a differ-
ent goal. We put together a time constraint and some as-
sumptions about the cloud provider in order to obtain a
scheme that allows an user to check that the cloud provider
is keeping at least one copy of the file in each agreed geolo-
cation.

2.3 Geolocation
There are many methods to find the estimated geolocation

of a host. Domain registration records, accessible through
whois, provide the physical address of the registrant for
an IP address; however, domain registration records have
the potential to be both outdated or related to an admin-
istrative site instead of the actual location. Sites such as
ip2location.com and ipligence.com have large, for-pay
databases that provide an estimate of where an IP address is
located. Although, these services seemed to be more accu-
rate than whois, an adversary can dynamically reassign IP
address - which would probably not be reflected in a static
database. Traceroute discovers the path packets traverse
using ICMP or TCP. Unfortunately, an intermediate router
may drop these packets leaving only a partial route.

The real problem with traceroute and whois services is
that they use an IP address as input. Colluding storage
nodes have the ability to send packets with the same IP
address. As a result, a distant machine could respond to
storage challenges even though the IP address appears to be
close.

Several research projects have studied the problem of ge-
olocating a machine using latency. Katz-Bassett et al. [10]
provided a comprehensive study of geolocation techniques.

• GeoPing works under the assumption that if two hosts
are near each other then their delays will be similar
to other landmarks. After pinging a target from all
landmarks, the result is a display vector which reveals
how close a target is to the landmarks.

• Introduced by Gueye et al. [7], Constraint-Based Ge-
olocation uses a triangulation technique to determine
the positioning of a target, which is possibly in between
the landmarks.

• Shortest Ping The authors of [10] ping the target from
all the landmarks. The target is then closest to the
landmark with the shortest ping.

• Speed of Internet By using many planet lab measure-
ments, in [10] the authors determine that the end to
end time of most packets has an upper bound of ap-
proximately 4

9
c where c is the speed of light.

• Topology Based The primary result of [10] is that geolo-
cation is more accurate when topology is considered.
Using traceroute, topology and per-hop latencies are
inferred. A constraint-based optimization attempts to
geolocate the target and all intermediary routers.

The work by Katz-Bassett is by no means the only work
attempting to discover the location of a host based on mea-
surements. Francis et al. [6] find the nearest host in terms of
low latency or high bandwidth. Systems such as Vivaldi [4]
use a synthetic network coordinate systems to predict the
latency between the hosts. More recently, Laki et al. [11]
used a path-latency model to separate out different types
of network delay. They conclude that accurately estimating
the propagation delay can improve the accuracy of distance
estimation.

3. MODELING THE CLOUD AND A THE-
ORETICAL SOLUTION

We present a solution for the case in which a customer
has contracted a service to store multiple copies of his file in
different geolocations and wants to verify the service level.
Note that keeping backups in different geolocations is a good
idea in order to prevent against unavailability caused by fac-
tors such as natural disaster and power outages, and also to
improve the network latency to access the data in differ-
ent parts of the world. We should also stress that these
advantages are lost in a great extension if the copies are
stored in the same physical place or in places that are very
close.

Let C be a cloud provider that has n datacenters, denoted
by si for 1 ≤ i ≤ n. Suppose that a customer made a
contract with C to keep one copy of his file in each of the
datacenters si1 , si2 , . . . , sik . We want to build a protocol
that tests if the cloud provider is really keeping one copy of
the file in each of the specified datacenters.

In order to construct the protocol, we make some assump-
tions about the cloud provider C. We assume that the ad-
versary will try to cut costs, but that he is not malicious. We
state below the assumptions that we made about C. These
assumptions are in line with the principle that the adversary
is only trying to reduce the operational costs.

Assumption 1. The locations of all data-centers of the
cloud provider C are well-known and all the data is stored
in these places.

Assumption 2. The cloud provider does not have any ex-
clusive Internet connection between the datacenters.

Although the adversary is economically rational, it may
still deviate from the protocol when it believes it is being
audited for location redundancy. A storage verification pro-
tocol should not make excessive assumptions about the dat-
acenter and its server. Additionally, audits should be not
tip the cloud services provider as to what data is being au-
dited. The auditor is able to make assumptions about the
machines it uses in the audit.

Assumption 3. For each datacenter si, we have access
to a machine ti that is located comparatively very close to si
(considering network latency as the distance function), when
compared to its distance to the other data centers and to the
distances between si and the other datacenters.

Note that in some cloud providers such as Amazon, it is
actually possible to execute a virtual machine inside the dat-
acenter and so we have the ideal machine ti for our purposes.

We can estimate the network latency (in this work we
consider one-way latency when we do not specify otherwise)
between each pair of datacenters by using clients positioned
very close to the location of the datacenters. This can be
done due to the fact that the latencies have a big geograph-
ical correlation [3]. So, we make the following assumption
about the resources that we have to perform the test.

For a, b ∈ {s1, . . . , sn, t1, . . . , tn}, let LB(α, a, b) be the
value such that the network latency from a to b is greater
than LB(α, a, b) with probability at least α (normally the
interesting values of α are the ones that are very close to 1).
Now we compute

MLT (i) = min
1≤j≤n:j 6=i

(LB(α, si, sj) + LB(α, sj , ti))

Note that for any j 6= i, we have that the network latency
to send something from si to sj and from there to ti is equal
or greater than MLT (i) with probability at least α2.

Let L̂B(α, ti, si) and ÛB(α, ti, si) be the values such that,
with probability at least α, the network latency from ti to si
is greater than L̂B(α, ti, si) and smaller than ÛB(α, ti, si)

and such that the value of ∆(α, ti, si) = ÛB(α, ti, si) −
L̂B(α, ti, si) is minimized.

We want to construct a protocol to test if a copy of our
file is present in si. Let Ti be an upper bound on the exe-
cution time of some auditing protocol. If the cloud provider
is honest, the client should accepted the protocol execution

as valid even if the elapsed time is Ti + 2ÛB(α, ti, si), since
this is the time needed to receive the answer in the worst
case scenario. On the other hand, the protocol execution
should not be accepted as valid if the elapsed time is greater

than MLT (i) + L̂B(α, ti, si), since in this case a dishonest
provider can use data present in another datacenter. There-
fore we should have

Ti ≤ MLT (i) + L̂B(α, ti, si)− 2ÛB(α, ti, si)

= MLT (i)− ÛB(α, ti, si)−∆(α, ti, si)

Hence, with probability at least α3, any verification protocol
in which the server has time limit Ti to respond, the cloud
provider can only use data that is present in si.

1

1The term α3 is the level of confidence that in the triangu-
lation possibly used by a dishonest provider all the latencies
will be within the used bounds.

3.1 Using Proofs of Retrievability in the Cloud
Model

For typical values of Ti we do not have enough time in
order to execute the known Proofs of Retrievability proto-
cols [9, 17, 5]. But as long as Ti is big enough to execute a
challenge to at least one random small block, we can still use
the basic idea behind computational unbounded-use PoR
(i.e., authentication tags that are associated with each file
block, stored in the cloud and used in the verification by
the user that only keeps the authentication key) in order to
obtain a verification protocol to test server si.

In each protocol execution the client sends a challenge
with as much random blocks as it possible to access in time

Ti. If the answer is not received in time Ti + 2ÛB(α, ti, si),
the client considers this an invalid execution. In the case
that a fraction substantially larger than 1 − α2 of the exe-
cutions are invalid, the client knows that the server is dis-
honest. If the returned pair (file block, authentication tag)
is not correct for some challenged block, then the client
knows that his file is not stored correctly in si. There-
fore if the server is only storing a fraction f < 1 of the
total file size, then the probability that he succeeds in the
tests decreases exponentially with the number of challenged
blocks. To increase the confidence level, the client can keep
running executions of the protocol at random times and at
each instant he can use the t more recent (valid) challenged
blocks to decide if the server is storing the file correctly or
not.

Another approach that may be possible, depending on the
specific value Ti and on the size of file, is to read a sequen-
tial part of the file in each execution. This approach exploits
the fact that the seek time of the disks are relatively high,
but they can normally read data at sequential positions very
fast. But using such approach, the probability of detecting
that the server is not storing your file correctly only decays
linearly in the amount of data read in the execution. In ad-
dition, this approach also significantly increases the amount
of data send between the server and the client.

3.2 Theoretical Limitations
Note that if some group of datacenters are very close to

each other, then Ti will be very small and will not allow us
to test even one random small block. In this case we cannot
check if a copy of the file is present in one specific datacenter
of this group or not. But we still may be able to distinguish a
copy present in this group of data centers (without knowing
in which specific one) from a copy of the file present in other,
distant, datacenters. I.e., let S = {s1, s2, . . . , sn} and sup-
pose that there is a group of data centers {si1 , si2 , . . . , sik} ⊂
S that are close to each other, but far away from the re-
maining datacenters S \ {si1 , si2 , . . . , sik}. Then we can use
similar ideas to test if there is at least one copy of our file
in the group of datacenters {si1 , si2 , . . . , sik}.

Hence, we can group the datacenters in accordance with
their geographical region and verify that there is at least
one copy of the file in each geographical region. We should
stress again that in many situations this is exactly what
the customer wants, one replica of his file in each region, in
order to prevent against problems such as power outage and
natural disaster and also to improve the latency experienced
by users in all parts of the world.

Figure 1: 40 Planetlab Nodes and 2 Amazon S3
Server Farms

4. BUILDING A PRACTICAL VERIFICA-
TION SYSTEM

The verification protocol requires that the test node be
able to determine whether the response to a challenge came
from the datacenter being tested, or another datacenter.
Specifically, knowledge of the datacenter locations and the
latencies between them is needed. In this section we show
that determining this information is feasible on today’s In-
ternet.

We also address the technical problems that arise in cre-
ating a verification system. We set out to answer:

• Which model gives the best prediction of geolocation?

• How far apart do datacenters need to be to accurately
discriminate the location of data?

• What are the characteristics of a node that accurately
decides geolocation?

• Which passive distance measurement is best in pre-
dicting geolocation?

4.1 Determining the Origin of Data from La-
tency

Individual hosts can measure the latency between them-
selves and other hosts on the Internet. Extracting the ori-
gin of the data requires building a model to estimate the
distance between the hosts.

Passive Distance Measurements
There are several ways of calculating the actual distance
between two points corresponding to hosts on the Internet.

• Haversine Distance: This is the distance between two
points on a sphere. There are models that take into
account the exact shape of the earth; but the haversine
distance seems to be fairly accurate in calculating the
shortest distance between cities in North America.

• Driving Distance: We used the Google Map API to
calculate the distance between the cities. Fiber optic
cable is typically laid between major cites, similar to
the Interstate Highways. Moreover, routing decisions
for both roads and packets may be based on geologic

structures. For example, in Figure 1 the red line sep-
arates nodes based on which Amazon S3 Server Farm
was used (east or west coast). This line is also over-
lays the Rocky Mountains. Several sites just east of
the Rocky Mountains use an east coast server instead
of a west coast server they are closer to the west coast
location.

• Topology Based Distance: This measurement yielded
the best results in [10]. However, this method requires
using traceroute to determine the per-hop latency be-
tween each router. Our goal is to have a simple dis-
tance calculation that assists in geolocating an IP ad-
dress without probing that would tip off the cloud stor-
age provider of an audit.

In this paper, the haversine distance is used except when
noted.

Latency on the Internet
We used Planetlab to get a sense of latency on the Internet.
We measured the time between sending a SYN packet and
receiving a SYN-ACK packet of a TCP connection half of
which is considered the latency. Note that this includes the
latency between the nodes as well as the time to set up a
TCP connection on the remote server.

Geolocation Predictive Models
Having collected latency measurements from test nodes to
known locations the following methods could be used to de-
termine the distance away subsequently downloaded content
originated from:

• Previous work [10] indicated that 4
9
*(speed of light) is

a good upper bound on Internet latency.

• The best fit line for a sampling of nodes. Given a col-
lection of (distance, latency) measurements to known
hosts we can use linear regression to find the best fit
line that models the relationship. Using reliable nodes,
we estimate latency (in ms) to be 1.202 × 10−5d +
0.0007701 where d is the distance in km. This differed
from 4

9
method; reasons for this discrepancy are most

likely from the way distance was measured, the time
to set up state for a TCP connection, and the original
approximation was for fiber optic cables (the Planetlab
hosts may not be connected directly to fiber).

• Given measurements for a particular host, we can cal-
culate the equation of the linear regression of these
points. We call this the site (or node) expected method.
This method should be useful for sites located far from
the core Internet routers. For example, traceroute re-
vealed that packets sent from the University of Nevada,
Reno sent to Seattle first travel 100 miles south to
Sacramento before being routed 700 miles north to
Seattle.

Feasibility
We expect latency and distance to have a positive linear
relationship. Figure 1 shows 40 Planetlab nodes dispersed
across North America from which we measured the latency
when downloading an image suspected to be in Amazon’s
S3. The requests were served by two class C networks: one
for east coast Planetlab nodes and another for west coast

Figure 2: Palo Alto or Seattle?

Planetlab nodes. Amazon is based in Seattle, WA, but has
several secondary locations including Palo Alto, CA. If data-
center geolocation is feasible then we expect a positive linear
relationship between latency and the distance from the host
to the location of the actual datacenter. The other loca-
tion should not have a positive linear relationship between
latency and the distance from the host to the alternate lo-
cation. From the graph in Figure 2, it was clear that the
data originated from Seattle and not Northern California.

4.2 Best Distance and Predictive Models
One way a content provider routes requests is through

DNS redirection [15]. Using public DNS servers in San Jose,
California and New Jersey, it was possible to force the Plan-
etlab nodes to download the image from the site of our choos-
ing. For each of our Planetlab nodes, we downloaded an im-
age from Amazon’s S3 from both Seattle, WA and Ashburn,
VA 75 times. All of these points were used as training data
to calculate the best fit and the node expected functions.

Our first experiment had each Planetlab download content
from 40 universities in North America. Under the assump-
tion that these institutions host their own web content, the
haversine distance was calculated as the truth value. The
predictive models were used to calculate an estimate for the
distance away.

The average absolute value of the error in the distance
calculation is graphed in Figure 3a. Two nodes, Cornell
and Iowa State had a significantly larger average difference
than the other sites (more than 100,000 km). One reason
for the large error may be the quality of the node’s Internet
connection. The node at Cornell was named planetlab4-
dsl.cs.cornell.edu, which seems to indicate that it uses a
slower DSL connection instead of Ethernet.

Excluding these two sites greatly improved the predictive
power of the best fit method, as seen in Figure 3b. Still,
two sites (University of Arizona and University of Colorado,
Boulder) performed poorly in predicting the site; especially
the 4

9
and Site Expected methods. Poor performance in the

Site Expected method indicates that these sites did not pro-
duce consistent data over the Amazon S3 and University
Datasets. We also excluded data from the two additional

Dist. Meth Model Avg. Error Std. Dev.

Haversine 4
9

1526.92 1012.672
Haversine Best Fit 441.637 459.592
Haversine Site Expected 531.792 526.440
Driving Best Fit 514.217 542.741
Driving Site Expected 629.340 608.167

Table 1: Average Error for Different Predictive
Models

Figure 4: Distance Error by Server

nodes (Washington University in St. Louis and the Uni-
versity of Victoria in British Columbia), after repeating the
pruning and seeing that these nodes performed poorly on all
three measurements. The result is seen in Figure 3c2.

From these graphs, the 4
9

method is clearly the worse pre-
dictive model. The Site Expected model outperforms the
Best Fit model when there are unreliable nodes. However,
once the unreliable nodes are eliminated the Best Fit model
performs the best in terms of average error (see Table 1). It
is not surprising that the Best Fit and Site Expected models
outperform the 4

9
model as the 4

9
the speed of light is a quick

upper bound approximation.
We were surprised to see that the Best Fit model outper-

formed the Site Expected at 29 of the 34 reliable sites. This
indicates that taking into account local routing information
does not improve the predictive capability of the model. A
plausible explanation for this is that there are delays that are
incurred near both the server and the client. Our training
data only used two sites to build the models - both Amazon
servers. The servers at the universities are heterogeneous so
the Site Expected model does not perform well on machines
with different configurations. We can see in Figure 4 that
the average error differs greatly between sites.

The best predictive model, for destinations of unknown
configuration, is to use measurements of latency and dis-
tance from diverse but reliable hosts.

Errors within one standard deviation, which is approxi-
mately 900 km (441km ± 459 km), seem reasonable to tell
the distance between many cities. The graph in Figure 5
shows the percentage of measurements that had an error

2Note these graphs have different scales. Specifically, we
use a logarithmic scale in Figure 3a and a linear scale in the
other graphs

Figure 5: Cumulative Distance vs. Error (Reliable
Sites)

Figure 6: Average Ranking for the N closest Sites

less than a given distance. For the Best Fit model, we can
get 90% confidence at approximately 975 km and 95% con-
fidence at approximately 1200km. Additionally, driving dis-
tance did not improve the prediction.

4.3 Effect of Number of Nodes on Accuracy
The previous experiments showed that it was possible to

coarsely estimate the distance a server is away. An error
of 900-1200km is reasonable to tell the difference between
most US cities, but is by no means precise. Additional mea-
surements should help decrease the error, by means of tri-
angulation. This will help us find the precise location of
datacenters.

Using the same data from the previous experiment, we
had each Planetlab node rank the universities from most
likely (rank 1) host to least likely (rank 40) in addition to
calculating the distance. We consider the average ranking
of the n closest nodes (and average this over all 40 sites) in
Figure 6.

(a) All University Data (b) Error < 100000 km (c) Reliable Nodes

Figure 3: Determining Node Reliability

Using more measurements clearly helps the certainty and
accuracy of the 4

9
and Site Expected models. For the Best

Fit model the number of measurements doesn’t seem to af-
fect the predictive capability of the model (although the best
performance was with 1 or 5 nodes contributing to the esti-
mated location).

5. VERIFYING STORAGE LOCATIONS
Universities and their websites are only in one location.

We are interested in developing an algorithm to figure out
the origin of data when there is more than one location. To
do this, we created an account on Amazon’s CloudFront and
uploaded a file. We then made a HTTP request for our file
from the reliable Planetlab nodes and recorded the latency.
The image was fetched three times from each node, almost
every time the server sending the image had a different IP
address.

5.1 Finding Datacenters
Using Assumption 1, we know the location of Amazon’s

CloudFront datacenters: Ashburn, Dallas, Jacksonville, Los
Angeles, Miami, New York, Newark, Palo Alto, Seattle and
St. Louis. It is unreasonable to expect to be able to tell the
difference between New York and Newark as they are 14.2
km away, so they were considered one node - called New
York. Each Planetlab node ranked all of the sites from most
likely (rank 1) to least likely (rank 9). Two variations of the
ranking were tested: considering only the n highest ranks,
only ranking the locations who were estimated to be within
a certain distance.

The hierarchical clustering algorithm given in Algorithm 1
was used to cluster the results.

euclidian− distance is the standard algorithm. The func-
tion weighted-ranks aims to average the ranks of the two
most similar clusters. However, if cluster1 was comprised
of n samples and cluster2 was comprised of m samples we
want the resulting average to reflect any potential imbalance
in cluster size. We say cluster1 has weight n and cluster2
has weight m, and calculate the new ranking of a datacenter
to be n

n+m
(cluster1’s ranking) + m

n+m
(cluster2’s ranking).

In general, only the top ranked city is used- which is ob-
tainable by setting the threshold to 0+ ε. As a consequence,
we may obtain a couple clusters that share the same top
rank but differ in the second or third rank. An alternative
is to use only the sites that are suspected to be within a

given radius (say 500 km). Some measurements will be clas-
sified as unknown if the suspected distance is greater than
this threshold. This helps eliminate packets that have an
abnormal delay.

Algorithm 1 Hierarchical Clustering Algorithm

Input: rankings, threshold
clusters ← rankings
weights ← [1,· · · ,1]
min sim ← −∞
first ← True
while min sim ≤ threshold do

if !first then
add to rankings weighted-ranks(clusters[join1],
weights[join1], clusters[join2], weights[join2])
remove rankings[join1] and rankings[join2]
add to weights[join1]+weights[join2]
remove weights[join1] and weights[join2]

end if
first ← False
min sim ← ∞
for i = 0→ |clusters| do

for j = 0→ i− 1 do
sim ← euclidian-distance(clusters[i], clusters[j])
if sim < min sim then

min sim ← sim
join1 ← i ; join2 ← j

end if
end for

end for
end while

To evaluate the system, domain name resolution was used
to find the common names of the Amazon servers from
which the geolocation could be deduced (server-216-137-47-
169.mia3.cloudfront.net is most likely in Miami). Several
parameters were tested: counting the highest ranked guesses
of geolocation, using only measurements that put the dat-
acenter close to the Planetlab node, and a combination of
the these parameters. The F-1 score3 was then calculated
for each site.

The results of the F-1 metric seem to indicate that se-
lecting only the top choice outperforms selecting all of the

3The F-1 score is the harmonic mean of precision and recall.
A F-1 score of 1.0 is the best while a score of 0 is the worst.

Test Ashburn Dallas JAX LAX Miami NYC Palo Alto STL Seattle
Top Rank 0.88 0.87 0.27 1.0 0.0 1.0 0.91 0.65 0.92
Top 2 Ranks 0.4 0.87 0.22 0.69 0.73 0.73 0.29 0.48 0.92
Top 3 Ranks 0.32 0.25 0.16 0.48 0.24 0.32 0.27 0.36 0.22
< 250 km (All Ranked) 0.31 0.0 0.0 0.57 0.0 0.84 1.0 0.33 0.31
< 500 km (All Ranked) 0.81 0.7 0.0 0.74 0.71 0.92 0.71 0.70 0.84
< 750 km (All Ranked) 0.56 0.64 0.22 0.61 0.71 0.67 0.48 0.55 1.0
< 1000 km (All Ranked) 0.49 0.74 0.42 0.77 0.94 0.56 0.47 0.48 0.97
< 250 km (Top Rank) 0.31 0.0 0.0 0.57 0.0 0.84 1.0 0.33 0.31
< 500 km (Top Rank) 1.0 0.7 0.0 0.82 0.0 1.0 0.91 0.70 0.84
< 750 km (Top Rank) 0.88 0.7 0.27 0.82 0.0 1.0 0.91 0.55 1.0
< 1000 km (Top Rank) 0.88 0.87 0.27 1.0 0.0 1.0 0.91 0.55 1.0

Table 2: F-1 Score For Various Parameters

ranked scores. Specifically, the F-1 score decreased between
thresholds of 500 km and 750 km for two of the cities; how-
ever, the F-1 score increased for two other cities. This means
above 500 km there are tradeoffs between selecting more
data points for increased certainty and accuracy.

The accuracy is determined by how reliable the nodes are
- which we measured in the University experiment. As more
sites concur that the data is in a location the more certain
we become that our data is stored there. One potential
problem with this dataset is that the number of nodes going
to each datacenter is not evenly distributed. There are only
two sites that go to Jacksonville, FL. At the high end there
are five sites that use St. Louis, MO.

In verifying storage, we are more interested in accuracy
than certainty. So it is reasonable to conclude that restrict-
ing predictions to only use measurements under 500km is
best. A slight modifications to the F-1 score weights preci-
sion higher than recall. This could be a more appropriate
measurement to reflect our priorities.

A threshold of 500km is reasonable for this data set. Al-
most all of the Planetlab nodes are within 500km of the
closest Amazon datacenter. We notice that St. Louis con-
sistently performed poorly in comparison to other sites with
the different parameters. This may be attributed to routing
abnormalities in the city of St. Louis itself; see Figure 4
where the University of Washington in St. Louis had the
second worst performance. Or this could be attributed to
St. Louis’ central location. Close proximity to other sites
requires that the threshold is lower to keep the same level
of accuracy.

Another way of looking at this data is on a Map 7. This
graph is of the top choice when restricted to predictions of
less than 500 km. In this graph, a correct assignment of an
IP address to city is designated by a green circle; similarly,
an incorrect assignment is designated by a red circle. The
map is comprised of 72 measurements. Missing from this
map are 30 measurements because the estimated distance
away was greater than 500 km: nine that were served from
Miami, six from Dallas and Jacksonville, and three each from
Los Angeles, Seattle and St. Louis.

Of the incorrect selections, nine that were actually routed
from Miami, FL were estimated to be in Jacksonville, FL.
Jacksonville and Miami are approximately 500 km apart.
This seems to indicate that 500 km is too close for the data-
centers to be to accurately differentiate where the data came
from using this method. The only other incorrect selection
was a single IP address located in St. Louis, MO but was

Figure 7: Top Choice of Amazon CloudFront Data-
center

estimated to be in Palo Alto, CA. Although the cities are a
fair distance apart, it is unsurprising that we have errors at
the central location of St. Louis.

This experiment showed, that with the proper parameters
we are able to predict with a high degree of accuracy where
data originates.

5.2 Finding Locations Without Assumption 1
It seems reasonable to expect that a contractual agree-

ment between a cloud service provider and a user would
divulge the locations of the datacenters. However, our ex-
perience in creating accounts with several leading cloud stor-
age providers indicated that this information was not always
readily available. Our method of locating datacenters ex-
tends to the situation where the locations are not well known
but with a performance hit.

The main technical difficulty is in selecting the target loca-
tions for where the data may be located. We ran our hierar-
chical clustering algorithm using the latitude and longitude
of the 30 largest cites [8] in the US as input. Increasing
the number of cities from nine to 30 also decreased the dis-
tances between potential server locations. To compensate,
the threshold for which to stop the hierarchical clustering
can be increased. Three of the nine sites (counting Newark
and New York as one site): Ashburn, Miami and St. Louis

Figure 8: Top Choice of Amazon CloudFront Data-
center with Unknown Locations

were not on the list of the 30 largest cities in the US. Con-
sequently, it is impossible to find an exact match on these
sites.

Figure 8 maps the predicted geolocations using the pa-
rameters of the top site within measurements less than 500
km. The actual locations are marked with an X. The radius
of a circle around a city is proportional to the number of IP
addresses estimated to be at that city.

The results show that removing Assumption 1 gives a
coarse idea of where the datacenters are located.

On the west coast, the datacenters in Seattle and San
Francisco/Palo Alto were accurately discovered. There were
only two Planetlab sites that used the Los Angeles datacen-
ter and there is an appropriate small cluster of estimates in
the southeast corner of the United States.

In the Midwest the Planetlab sites could, with the excep-
tion of one measurement, determine that they were being
served content from the Midwest. Traffic actually originat-
ing St. Louis (not on the top 30 cities) was predicted to be
at many of the surrounding cities. Milwaukee, Indianapo-
lis and Detroit were each associated with at least three IP
addresses. Despite Dallas being on the top 30 cities list,
no Planetlab site connecting with Dallas pick it as the city
of the origin. Nearby Oklahoma City and and Austin were
popular estimates along with El Paso (900 km away).

The densely populated, east coast was less accurate. New
York is situated between Philadelphia and Boston; all of
which received votes as the location of the New York and
Newark datacenters. When a Planetlab node connected to
an Amazon datacenter in Miami, more than half the time it
predicted it was in Florida (three IP addresses were in Char-
lotte, NC). Although Ashburn is located approximately 50
km from Washington DC, this was the estimated geolocation
three times; nine times the second closest site Charlotte, NC
(600km away).

Although we cannot find the exact location, knowing the
approximate location suffices for our application. As dis-
cussed in Section 3.2 when storing data in the cloud cus-
tomers are more concerned about the diversity of the loca-
tions than the exact locations.

Figure 9: Predicting Datacenter after Switching
DNS Server

5.3 Detecting Changes in Location
A requirement of verifiable storage is the ability to detect

when the cloud storage provider switches the location from
which data is served. In general, testing where the data
came from should suffice. However the setting is different in
two key ways:

• It should be able to verify that even a single packet
came from an unexpected server.

• The expected location is well known, and there is a
large amount of historical data that allows for more
accurate prediction of the latency between the node
and the cloud storage provider.

We did a test to see if the reliable Planetlab nodes could
tell the difference between a download from Ashburn, VA
or Seattle, WA. The Planetlab nodes first downloaded the
image many times from each Ashburn and Seattle.

We wrote a script that randomly set the DNS server and
made a HTTP GET request for the image. The Planetlab
nodes were randomly assigned DNS server to download the
image, and calculated the expected distance, e. It then out-
put a guess of whichever datacenter location was closer to
e. The node’s success in predicting the origin is shown in
Figure 9. As our distance measurement, we use the absolute
value in the difference between the distance from the Planet-
lab node to each S3 server farm. This effectively tells us how
much closer the near Planetlab node is than the far Planet-
lab node. We expect Planetlab nodes with larger distances
to perform better than those with smaller distances.

All prediction methods can tell origin of the data when the
distance more than 3000 km; with very few exceptions, the
prediction is always correct when the distance is more than
1500 km. The Best Fit and Site Expected methods clearly
outperform the 4

9
method. Unlike the previous experiments,

the Site Expected method outperforms the Best Fit at a few
data points. This can be attributed to the fact that the
datacenter machines are most likely homogeneous, and are
therefore more predictable. This is consistent with Figure 4
where we saw that server heterogeneity adversely affected
the prediction.

This experiment should be repeated over a period of time.
The collection was completed in a single evening. This
did not account for changes in routing predictability due
to the time of day (we expect more congestion and therefore
more latency during waking hours than during the middle
of the night) or changes to the route (different routing pat-
tern, changes to availability or hardware at any intermediate
router).

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented a solution to the timely prob-

lem of verifying the geolocation of data in the cloud. We
provided a theoretical framework to set up a verification
system and suggested ways to extend traditional proofs of
Retrievability to the application. We used Planetlab to col-
lect data from diverse locations and concluded that choosing
reliable nodes is paramount to the accuracy of our algorithm.
Finally, we successfully identified the approximate geoloca-
tions of data in Amazon’s cloud.

Ideally, we would extend the theoretical framework and
experiments to provide an independent service that audited
cloud storage providers. In order to optimize this solution we
would test additional cloud storage providers besides Ama-
zon. Running the experiments at different times of the day
and over a long period of time could provide a more accurate
model of the provider’s system and its response to stress.

The latency to geolocation experiments in this paper in-
volve fetching small files over the Internet. In order to
build a functional end-to-end system several modifications
are needed. In the experiments, we do not address packet
loss (although we would probably exclude nodes with high
loss rate). It is possible that the service provider would
purposefully drop audit packets. The relationship between
retransmission and latency in this setting is an open prob-
lem.

A complete system would leverage PoRs to provide a high
level of confidence of storage through selectively querying
datacenters to establish geolocation. PoRs are more com-
plex and require additional computation and time. It seems
reasonable to assume that the time to read from disk and
perform computations would be the same across datacenters;
however, the model would need to be adjusted to account
for this extra time. Additionally, the ideas from section 3.1
would need to be applied to use traditional PoRs.

The simple hierarchical clustering algorithm grouped sim-
ilarly ranked IP addresses to find the datacenters. Advanced
clustering algorithms such as spectral clustering may yield
better results - especially when the locations of the datacen-
ters are unknown.

7. REFERENCES
[1] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring,

L. Kissner, Z. N. J. Peterson, and D. X. Song.
Provable data possession at untrusted stores. In Ning
et al. [14], pages 598–609.

[2] H. Blodget. Amazon’s cloud crash disaster
permanently destroyed many customers’ data.
http://www.businessinsider.com/

amazon-lost-data-2011-4, 2011.

[3] K. D. Bowers, M. van Dijk, A. Juels, A. Oprea, and
R. L. Rivest. How to tell if your cloud files are
vulnerable to drive crashes. Cryptology ePrint

Archive, Report 2010/214, 2010.
http://eprint.iacr.org/.

[4] F. Dabek, R. Cox, F. Kaashoek, and R. Morris.
Vivaldi: a decentralized network coordinate system. In
Proceedings of the 2004 conference on Applications,
technologies, architectures, and protocols for computer
communications, SIGCOMM ’04, pages 15–26, New
York, NY, USA, 2004. ACM.

[5] Y. Dodis, S. P. Vadhan, and D. Wichs. Proofs of
retrievability via hardness amplification. In
O. Reingold, editor, TCC, volume 5444 of Lecture
Notes in Computer Science, pages 109–127. Springer,
2009.

[6] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. F.
Gryniewicz, and Y. Jin. An architecture for a global
internet host distance estimation service. In IEEE
INFOCOM, pages 210–217, 1999.

[7] B. Gueye, A. Ziviani, M. Crovella, and S. Fdida.
Constraint-based geolocation of internet hosts. In
IEEE/ACM Transactions on Networking, pages
288–293, 2004.

[8] C. in the United States. http:
//www.travelmath.com/cities-in/United+States.

[9] A. Juels and B. S. K. Jr. Pors: proofs of retrievability
for large files. In Ning et al. [14], pages 584–597.

[10] E. Katz-Bassett, J. P. John, A. Krishnamurthy,
D. Wetherall, T. E. Anderson, and Y. Chawathe.
Towards ip geolocation using delay and topology
measurements. In J. M. Almeida, V. A. F. Almeida,
and P. Barford, editors, Internet Measurement
Conference, pages 71–84. ACM, 2006.

[11] S. Laki, P. Matray, P. Hága, I. Csabai, and G. Vattay.
A model based approach for improving router
geolocation. Computer Networks, 54(9):1490–1501,
2010.

[12] A. W. S. LLC. Amazon simple storage service (amazon
s3). http://aws.amazon.com/s3/#protecting, 2010.

[13] D. Murphy. Hotmail users report blank inboxes. http:
//www.pcmag.com/article2/0,2817,2374949,00.asp,
1 2011.

[14] P. Ning, S. D. C. di Vimercati, and P. F. Syverson,
editors. Proceedings of the 2007 ACM Conference on
Computer and Communications Security, CCS 2007,
Alexandria, Virginia, USA, October 28-31, 2007.
ACM, 2007.

[15] M. Rabinovich. Issues in web content replication.
IEEE Data Eng. Bull., 21(4):21–29, 1998.

[16] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds. In E. Al-Shaer,
S. Jha, and A. D. Keromytis, editors, ACM
Conference on Computer and Communications
Security, pages 199–212. ACM, 2009.

[17] H. Shacham and B. Waters. Compact proofs of
retrievability. In J. Pieprzyk, editor, ASIACRYPT,
volume 5350 of Lecture Notes in Computer Science,
pages 90–107. Springer, 2008.

[18] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter.
HomeAlone: Co-residency detection in the cloud via
side-channel analysis. In Proceedings of IEEE Security
and Privacy (“Oakland”) 2011. IEEE Computer
Society, May 2011.

